Patents by Inventor Dustin Slack

Dustin Slack has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220259684
    Abstract: Some variations provide a carbon-negative carbon product that is characterized by a carbon intensity less than 0 kg CO2e per metric ton of the carbon-negative carbon product, wherein the carbon-negative carbon product contains at least about 50 wt % carbon. In some embodiments, the carbon intensity is less than ?500 kg CO2e per metric ton of the carbon-negative carbon product. Other variations provide a carbon-negative metal product (e.g., a steel product) that is characterized by a carbon intensity less than 0 kg CO2e per metric ton of the carbon-negative metal product, wherein the metal product contains from 50 wt % to 100 wt % of one or more metals and optionally one or more alloying elements. In some embodiments, the carbon-negative metal product is characterized by a carbon intensity less than ?200 kg CO2e per metric ton of the carbon-negative metal product. The carbon-negative metal product can contain a wide variety of metals.
    Type: Application
    Filed: February 17, 2022
    Publication date: August 18, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220228082
    Abstract: In some variations, the invention provides a biocarbon pellet comprising: 35 wt % to 99 wt % of a biogenic reagent, wherein the biogenic reagent comprises, on a dry basis, at least 60 wt % carbon; 0 wt % to 35 wt % water moisture; and 1 wt % to 30 wt % of a binder, wherein the biocarbon pellet is characterized by an adjustable Hardgrove Grindability Index (HGI) from about 30 to about 120, as shown in the Examples. The pellet HGI is adjustable by controlling process conditions and the pellet binder. The binder can be an organic binder or an inorganic binder. The carbon is renewable as determined from a measurement of the 14C/12C isotopic ratio. Many processes of making and using the biocarbon pellets are described. Applications of the biocarbon pellets include pulverized coal boilers, furnaces for making metals such as iron or silicon, and gasifiers for producing reducing gas.
    Type: Application
    Filed: January 20, 2022
    Publication date: July 21, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack, Forrest S. Graham
  • Publication number: 20220228081
    Abstract: In some variations, the invention provides a biocarbon pellet comprising: 35 wt % to 99 wt % of a biogenic reagent, wherein the biogenic reagent comprises, on a dry basis, at least 60 wt % carbon; 0 wt % to 35 wt % water moisture; and 1 wt % to 30 wt % of a binder, wherein the biocarbon pellet is characterized by an adjustable Hardgrove Grindability Index (HGI) from about 30 to about 120, as shown in the Examples. The pellet HGI is adjustable by controlling process conditions and the pellet binder. The binder can be an organic binder or an inorganic binder. The carbon is renewable as determined from a measurement of the 14C/12C isotopic ratio. Many processes of making and using the biocarbon pellets are described. Applications of the biocarbon pellets include pulverized coal boilers, furnaces for making metals such as iron or silicon, and gasifiers for producing reducing gas.
    Type: Application
    Filed: January 20, 2022
    Publication date: July 21, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack, Forrest S. Graham
  • Publication number: 20220228080
    Abstract: In some variations, the invention provides a biocarbon pellet comprising: 35 wt % to 99 wt % of a biogenic reagent, wherein the biogenic reagent comprises, on a dry basis, at least 60 wt % carbon; 0 wt % to 35 wt % water moisture; and 1 wt % to 30 wt % of a binder, wherein the biocarbon pellet is characterized by an adjustable Hardgrove Grindability Index (HGI) from about 30 to about 120, as shown in the Examples. The pellet HGI is adjustable by controlling process conditions and the pellet binder. The binder can be an organic binder or an inorganic binder. The carbon is renewable as determined from a measurement of the 14C/12C isotopic ratio. Many processes of making and using the biocarbon pellets are described. Applications of the biocarbon pellets include pulverized coal boilers, furnaces for making metals such as iron or silicon, and gasifiers for producing reducing gas.
    Type: Application
    Filed: January 20, 2022
    Publication date: July 21, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack, Forrest S. Graham
  • Publication number: 20220162077
    Abstract: Improved processes and systems are disclosed for producing renewable hydrogen suitable for reducing metal ores, as well as for producing activated carbon. Some variations provide a process comprising: pyrolyzing biomass to generate a biogenic reagent comprising carbon and a pyrolysis off-gas; converting the pyrolysis off-gas to additional reducing gas and/or heat; reacting at least some of the biogenic reagent with a reactant to generate a reducing gas; and chemically reducing a metal oxide in the presence of the reducing gas. Some variations provide a process for producing renewable hydrogen by biomass pyrolysis to generate a biogenic reagent, conversion of the biogenic reagent to a reducing gas, and separation and recovery of hydrogen from the reducing gas. A reducing-gas composition for reducing a metal oxide is provided, comprising renewable hydrogen according to a hydrogen-isotope analysis. Reacted biogenic reagent may also be recovered as an activated carbon product. Many variations are disclosed.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 26, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220162064
    Abstract: Improved processes and systems are disclosed for producing renewable hydrogen suitable for reducing metal ores, as well as for producing activated carbon. Some variations provide a process comprising: pyrolyzing biomass to generate a biogenic reagent comprising carbon and a pyrolysis off-gas; converting the pyrolysis off-gas to additional reducing gas and/or heat; reacting at least some of the biogenic reagent with a reactant to generate a reducing gas; and chemically reducing a metal oxide in the presence of the reducing gas. Some variations provide a process for producing renewable hydrogen by biomass pyrolysis to generate a biogenic reagent, conversion of the biogenic reagent to a reducing gas, and separation and recovery of hydrogen from the reducing gas. A reducing-gas composition for reducing a metal oxide is provided, comprising renewable hydrogen according to a hydrogen-isotope analysis. Reacted biogenic reagent may also be recovered as an activated carbon product. Many variations are disclosed.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 26, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220162726
    Abstract: Improved processes and systems are disclosed for producing renewable hydrogen suitable for reducing metal ores, as well as for producing activated carbon. Some variations provide a process comprising: pyrolyzing biomass to generate a biogenic reagent comprising carbon and a pyrolysis off-gas; converting the pyrolysis off-gas to additional reducing gas and/or heat; reacting at least some of the biogenic reagent with a reactant to generate a reducing gas; and chemically reducing a metal oxide in the presence of the reducing gas. Some variations provide a process for producing renewable hydrogen by biomass pyrolysis to generate a biogenic reagent, conversion of the biogenic reagent to a reducing gas, and separation and recovery of hydrogen from the reducing gas. A reducing-gas composition for reducing a metal oxide is provided, comprising renewable hydrogen according to a hydrogen-isotope analysis. Reacted biogenic reagent may also be recovered as an activated carbon product. Many variations are disclosed.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 26, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220162725
    Abstract: Improved processes and systems are disclosed for producing renewable hydrogen suitable for reducing metal ores, as well as for producing activated carbon. Some variations provide a process comprising: pyrolyzing biomass to generate a biogenic reagent comprising carbon and a pyrolysis off-gas; converting the pyrolysis off-gas to additional reducing gas and/or heat; reacting at least some of the biogenic reagent with a reactant to generate a reducing gas; and chemically reducing a metal oxide in the presence of the reducing gas. Some variations provide a process for producing renewable hydrogen by biomass pyrolysis to generate a biogenic reagent, conversion of the biogenic reagent to a reducing gas, and separation and recovery of hydrogen from the reducing gas. A reducing-gas composition for reducing a metal oxide is provided, comprising renewable hydrogen according to a hydrogen-isotope analysis. Reacted biogenic reagent may also be recovered as an activated carbon product. Many variations are disclosed.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 26, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220162076
    Abstract: Improved processes and systems are disclosed for producing renewable hydrogen suitable for reducing metal ores, as well as for producing activated carbon. Some variations provide a process comprising: pyrolyzing biomass to generate a biogenic reagent comprising carbon and a pyrolysis off-gas; converting the pyrolysis off-gas to additional reducing gas and/or heat; reacting at least some of the biogenic reagent with a reactant to generate a reducing gas; and chemically reducing a metal oxide in the presence of the reducing gas. Some variations provide a process for producing renewable hydrogen by biomass pyrolysis to generate a biogenic reagent, conversion of the biogenic reagent to a reducing gas, and separation and recovery of hydrogen from the reducing gas. A reducing-gas composition for reducing a metal oxide is provided, comprising renewable hydrogen according to a hydrogen-isotope analysis. Reacted biogenic reagent may also be recovered as an activated carbon product. Many variations are disclosed.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 26, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220098701
    Abstract: Some variations provide a composition for reducing a metal ore, the composition comprising a carbon-metal ore particulate, wherein the carbon-metal ore particulate comprises at least about 0.1 wt % to at most about 50 wt % fixed carbon on a moisture-free and ash-free basis, and wherein the carbon is at least 50% renewable carbon as determined from a measurement of the 14C/12C isotopic ratio. Some variations provide a process for reducing a metal ore, comprising: providing a biomass feedstock; pyrolyzing the feedstock to generate a biogenic reagent comprising carbon and a pyrolysis off-gas comprising hydrogen or carbon monoxide; obtaining a metal ore comprising a metal oxide; combining the carbon with the metal ore, to generate a carbon-metal ore particulate; optionally pelletizing the carbon-metal ore particulate; and utilizing the pyrolysis off-gas to chemically reduce the metal oxide to elemental metal, such as iron.
    Type: Application
    Filed: September 25, 2021
    Publication date: March 31, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220098685
    Abstract: Some variations provide a composition for reducing a metal ore, the composition comprising a carbon-metal ore particulate, wherein the carbon-metal ore particulate comprises at least about 0.1 wt % to at most about 50 wt % fixed carbon on a moisture-free and ash-free basis, and wherein the carbon is at least 50% renewable carbon as determined from a measurement of the 14C/12C isotopic ratio. Some variations provide a process for reducing a metal ore, comprising: providing a biomass feedstock; pyrolyzing the feedstock to generate a biogenic reagent comprising carbon and a pyrolysis off-gas comprising hydrogen or carbon monoxide; obtaining a metal ore comprising a metal oxide; combining the carbon with the metal ore, to generate a carbon-metal ore particulate; optionally pelletizing the carbon-metal ore particulate; and utilizing the pyrolysis off-gas to chemically reduce the metal oxide to elemental metal, such as iron.
    Type: Application
    Filed: September 25, 2021
    Publication date: March 31, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20220098700
    Abstract: Some variations provide a composition for reducing a metal ore, the composition comprising a carbon-metal ore particulate, wherein the carbon-metal ore particulate comprises at least about 0.1 wt % to at most about 50 wt % fixed carbon on a moisture-free and ash-free basis, and wherein the carbon is at least 50% renewable carbon as determined from a measurement of the 14C/12C isotopic ratio. Some variations provide a process for reducing a metal ore, comprising: providing a biomass feedstock; pyrolyzing the feedstock to generate a biogenic reagent comprising carbon and a pyrolysis off-gas comprising hydrogen or carbon monoxide; obtaining a metal ore comprising a metal oxide; combining the carbon with the metal ore, to generate a carbon-metal ore particulate; optionally pelletizing the carbon-metal ore particulate; and utilizing the pyrolysis off-gas to chemically reduce the metal oxide to elemental metal, such as iron.
    Type: Application
    Filed: September 25, 2021
    Publication date: March 31, 2022
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20210220801
    Abstract: In various embodiments, the present disclosure provides biogenic porous carbon silicon dioxide compositions and methods of production and uses thereof.
    Type: Application
    Filed: June 13, 2019
    Publication date: July 22, 2021
    Inventors: James A. Mennell, Daniel J. Despen, Dustin Slack