Patents by Inventor Dyson Tai

Dyson Tai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10964738
    Abstract: An image sensor includes one or more photodiodes disposed in a semiconductor material to receive image light and generate image charge, and a floating diffusion to receive the image charge from the one or more photodiodes. One or more transfer transistors is coupled to transfer image charge in the one or more photodiodes to the floating diffusion, and a source follower transistor is coupled to amplify the image charge in the floating diffusion. The source follower includes a gate electrode (coupled to the floating diffusion), source and drain electrodes, and an active region disposed in the semiconductor material between the source and drain electrodes. A dielectric material is disposed between the gate electrode and the active region and has a first thickness and a second thickness. The second thickness is greater than the first thickness, and the second thickness is disposed closer to the drain electrode than the first thickness.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: March 30, 2021
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Yuanwei Zheng, Qin Wang, Cunyu Yang, Guannan Chen, Duli Mao, Dyson Tai, Lindsay Grant, Eric Webster, Sing-Chung Hu
  • Patent number: 10880467
    Abstract: An image sensor pixel array comprises a plurality of image pixel units to gather image information and a plurality of phase detection auto-focus (PDAF) pixel units to gather phase information. Each of the PDAF pixel units includes two of first image sensor pixels covered by a shared micro-lens. Each of the image pixel units includes four of second image sensor pixels adjacent to each other, wherein each of the second image sensor pixels is covered by an individual micro-lens. A coating layer is disposed on the micro-lenses and forms a flattened surface across the whole image sensor pixel array to receive incident light.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: December 29, 2020
    Assignee: OmniVision Technologies, Inc.
    Inventors: Chen-Wei Lu, Yin Qian, Dyson Tai, Chin Poh Pang, Boyang Zhang, Cheng Zhao
  • Patent number: 10848697
    Abstract: An image sensor pixel array comprises a center region and two parallel edge regions, wherein the center region is between the two parallel edge regions. The center region comprises a plurality of image pixels disposed along first sub-array of rows and columns, wherein each of the plurality of image pixels comprises a first micro-lens (ML) formed at an offset position above a first light receiving element as a countermeasure for shortening of exit pupil distance of the image pixel in the center region, and each of the two parallel edge regions comprises a plurality of phase detection auto-focus (PDAF) pixels disposed along second sub-array of rows and columns, wherein each of the plurality of PDAF pixels comprises a second micro-lens (ML) formed at an alignment position above a second light receiving element; and at least one of the PDAF pixels is located at a distance away from center of the edge region to receive incident light along an injection tilt angle.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: November 24, 2020
    Assignee: OmniVision Technologies, Inc.
    Inventors: Kazufumi Watanabe, Chih-Wei Hsiung, Vincent Venezia, Dyson Tai, Lindsay Grant
  • Patent number: 10734434
    Abstract: An image sensor pixel includes a photodiode disposed in a semiconductor material to generate image charge in response to light incident on a backside of the semiconductor material, and a pinning layer disposed in the semiconducting material and coupled to the photodiode. The pixel also includes a vertical overflow drain disposed in the semiconductor material and coupled to the pinning layer such that the pinning layer is disposed between the vertical overflow drain and the photodiode. A floating diffusion disposed in the semiconductor material proximate to the photodiode, and a vertical transfer transistor is disposed in part in the semiconductor material and coupled to the photodiode to transfer the image charge from the photodiode to the floating diffusion in response to a transfer signal applied to the gate terminal of the vertical transfer transistor.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: August 4, 2020
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Yuanwei Zheng, Gang Chen, Duli Mao, Dyson Tai, Lindsay Grant
  • Patent number: 10644057
    Abstract: An image sensor includes a photodiode disposed in a first semiconductor material to absorb photons incident on the image sensor and generate image charge. A floating diffusion is disposed in the first semiconductor material and positioned to receive the image charge from the photodiode, and a transfer transistor is coupled between the photodiode and the floating diffusion to transfer the image charge out of the photodiode into floating diffusion in response to a transfer signal. A source follower transistor with a gate terminal is coupled to the floating diffusion to output an amplified signal of the image charge in the floating diffusion. The gate terminal includes a second semiconductor material in contact with the floating diffusion, and a gate oxide is partially disposed between the second semiconductor material and the first semiconductor material. The second semiconductor material extends beyond the lateral bounds of the floating diffusion.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: May 5, 2020
    Assignee: OmniVision Technologies, Inc.
    Inventors: Xin Wang, Dajiang Yang, Siguang Ma, Keiji Mabuchi, Bill Phan, Duli Mao, Dyson Tai
  • Publication number: 20200105807
    Abstract: An image sensor includes one or more photodiodes disposed in a semiconductor material to receive image light and generate image charge, and a floating diffusion to receive the image charge from the one or more photodiodes. One or more transfer transistors is coupled to transfer image charge in the one or more photodiodes to the floating diffusion, and a source follower transistor is coupled to amplify the image charge in the floating diffusion. The source follower includes a gate electrode (coupled to the floating diffusion), source and drain electrodes, and an active region disposed in the semiconductor material between the source and drain electrodes. A dielectric material is disposed between the gate electrode and the active region and has a first thickness and a second thickness. The second thickness is greater than the first thickness, and the second thickness is disposed closer to the drain electrode than the first thickness.
    Type: Application
    Filed: October 2, 2018
    Publication date: April 2, 2020
    Inventors: Gang Chen, Yuanwei Zheng, Qin Wang, Cunyu Yang, Guannan Chen, Duli Mao, Dyson Tai, Lindsay Grant, Eric Webster, Sing-Chung Hu
  • Publication number: 20200099878
    Abstract: An image sensor pixel comprises a first charge storage node configured to have a first charge storage electric potential; a second charge storage node configured to have a second charge storage electric potential and receive charge from the first charge storage node, wherein the second charge storage electric potential is greater than the first charge storage electric potential; and a transfer circuit coupled between the first and the second charge storage nodes, wherein the transfer circuit comprises at least three transfer regions, wherein: a first transfer region is proximate to the first charge storage node and configured to have a first transfer electric potential greater than the first charge storage electric potential and lower than the second charge storage electric potential; a second transfer region is coupled between the first and a third transfer region and configured to have a second transfer electric potential greater than the first charge storage electric potential and lower than the second cha
    Type: Application
    Filed: September 25, 2018
    Publication date: March 26, 2020
    Applicant: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Duli Mao, Dyson Tai, Lindsay Grant
  • Publication number: 20200059618
    Abstract: An image sensor pixel array comprises a center region and two parallel edge regions, wherein the center region is between the two parallel edge regions. The center region comprises a plurality of image pixels disposed along first sub-array of rows and columns, wherein each of the plurality of image pixels comprises a first micro-lens (ML) formed at an offset position above a first light receiving element as a countermeasure for shortening of exit pupil distance of the image pixel in the center region, and each of the two parallel edge regions comprises a plurality of phase detection auto-focus (PDAF) pixels disposed along second sub-array of rows and columns, wherein each of the plurality of PDAF pixels comprises a second micro-lens (ML) formed at an alignment position above a second light receiving element; and at least one of the PDAF pixels is located at a distance away from center of the edge region to receive incident light along an injection tilt angle.
    Type: Application
    Filed: August 14, 2018
    Publication date: February 20, 2020
    Applicant: OmniVision Technologies, Inc.
    Inventors: Kazufumi Watanabe, Chih-Wei Hsiung, Vincent Venezia, Dyson Tai, Lindsay Grant
  • Patent number: 10566380
    Abstract: An image sensor includes a plurality of photodiodes disposed in a semiconductor material to convert image light into image charge. A floating diffusion is disposed proximate to the plurality of photodiodes to receive the image charge from the plurality of photodiodes. A plurality of transfer transistors is coupled to transfer the image charge from the plurality of photodiodes into the floating diffusion in response to a voltage applied to the gate terminal of the plurality of transfer transistors. A first trench isolation structure extends from a frontside of the semiconductor material into the semiconductor material and surrounds the plurality of photodiodes. A second trench isolation structure extends from a backside of the semiconductor material into the semiconductor material. The second trench isolation structure is disposed between individual photodiodes in the plurality of photodiodes.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: February 18, 2020
    Assignee: OmniVision Technologies, Inc.
    Inventors: Young Woo Jung, Lindsay Grant, Dyson Tai, Vincent Venezia, Wei Zheng
  • Publication number: 20200045223
    Abstract: An image sensor pixel array comprises a plurality of image pixel units to gather image information and a plurality of phase detection auto-focus (PDAF) pixel units to gather phase information. Each of the PDAF pixel units includes two of first image sensor pixels covered by two micro-lenses, respectively. Each of the image pixel units includes four of second image sensor pixels adjacent to each other, wherein each of the second image sensor pixels is covered by an individual micro-lens. A coating layer is disposed on the micro-lenses and forms a flattened surface across the whole image sensor pixel array. A PDAF micro-lens is formed on the coating layer to cover the first image sensor pixels.
    Type: Application
    Filed: October 10, 2019
    Publication date: February 6, 2020
    Applicant: OmniVision Technologies, Inc.
    Inventors: Chin Poh Pang, Chen-Wei Lu, Shao-Fan Kao, Chun-Yung Ai, Yin Qian, Dyson Tai, Qingwei Shan, Lindsay Grant
  • Publication number: 20190394389
    Abstract: An image sensor pixel array comprises a plurality of image pixel units to gather image information and a plurality of phase detection auto-focus (PDAF) pixel units to gather phase information. Each of the PDAF pixel units includes two of first image sensor pixels covered by a shared micro-lens. Each of the image pixel units includes four of second image sensor pixels adjacent to each other, wherein each of the second image sensor pixels is covered by an individual micro-lens. A coating layer is disposed on the micro-lenses and forms a flattened surface across the whole image sensor pixel array to receive incident light.
    Type: Application
    Filed: June 25, 2018
    Publication date: December 26, 2019
    Inventors: Chen-Wei Lu, Yin Qian, Dyson Tai, Chin Poh Pang, Boyang Zhang, Cheng Zhao
  • Publication number: 20190355778
    Abstract: An image sensor pixel includes a photodiode disposed in a semiconductor material to generate image charge in response to light incident on a backside of the semiconductor material, and a pinning layer disposed in the semiconducting material and coupled to the photodiode. The pixel also includes a vertical overflow drain disposed in the semiconductor material and coupled to the pinning layer such that the pinning layer is disposed between the vertical overflow drain and the photodiode. A floating diffusion disposed in the semiconductor material proximate to the photodiode, and a vertical transfer transistor is disposed in part in the semiconductor material and coupled to the photodiode to transfer the image charge from the photodiode to the floating diffusion in response to a transfer signal applied to the gate terminal of the vertical transfer transistor.
    Type: Application
    Filed: May 18, 2018
    Publication date: November 21, 2019
    Inventors: Yuanwei Zheng, Gang Chen, Duli Mao, Dyson Tai, Lindsay Grant
  • Patent number: 10411063
    Abstract: A single-exposure high dynamic range (HDR) image sensor includes a first photodiode and a second photodiode, with a smaller full-well capacity than the first photodiode, disposed in a semiconductor material. The image sensor also includes a first floating diffusion disposed in the semiconductor material and a first transfer gate coupled to the first photodiode to transfer first image charge accumulated in the first photodiode into the first floating diffusion. A second floating diffusion is disposed in the semiconductor material and a second transfer gate is coupled to the second photodiode to transfer second image charge accumulated in the second photodiode into the second floating diffusion. An attenuation layer is disposed between the second photodiode and image light directed towards the single-exposure HDR image sensor to block a portion of the image light from reaching the second photodiode.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: September 10, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Dajiang Yang, Oray Orkun Cellek, Duli Mao, Xianfu Cheng, Xin Wang, Bill Phan, Dyson Tai
  • Publication number: 20190165016
    Abstract: An image sensor includes a photodiode disposed in a semiconductor material to generate image charge in response to incident light, and a floating diffusion disposed in the semiconductor material proximate to the photodiode. A transfer transistor is coupled to the photodiode to transfer the image charge from the photodiode into the floating diffusion in response to a transfer signal applied to a transfer gate of the transfer transistor. A source follower transistor is coupled to the floating diffusion to amplify a charge on the floating diffusion. The source follower transistor includes a gate electrode including a semiconductor material having a first dopant type; a source electrode, having a second dopant type, disposed in the semiconductor material; a drain electrode, having the second dopant type, disposed in the semiconductor material; and a channel, having the second dopant type, disposed between the source electrode and the drain electrode.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 30, 2019
    Inventors: Kazufumi Watanabe, Young Woo Jung, Chih-Wei Hsiung, Dyson Tai, Lindsay Grant
  • Patent number: 10304882
    Abstract: An image sensor includes a photodiode disposed in a semiconductor material to generate image charge in response to incident light, and a floating diffusion disposed in the semiconductor material proximate to the photodiode. A transfer transistor is coupled to the photodiode to transfer the image charge from the photodiode into the floating diffusion in response to a transfer signal applied to a transfer gate of the transfer transistor. A source follower transistor is coupled to the floating diffusion to amplify a charge on the floating diffusion. The source follower transistor includes a gate electrode including a semiconductor material having a first dopant type; a source electrode, having a second dopant type, disposed in the semiconductor material; a drain electrode, having the second dopant type, disposed in the semiconductor material; and a channel, having the second dopant type, disposed between the source electrode and the drain electrode.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: May 28, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Kazufumi Watanabe, Young Woo Jung, Chih-Wei Hsiung, Dyson Tai, Lindsay Grant
  • Patent number: 10297627
    Abstract: A chip scale package (CSP) structure for an image sensor comprises an image sensor chip, wherein the image sensor chip comprises a semiconductor substrate having a top surface to receive light, a plurality of color filters disposed over the top surface, and a plurality of micro lenses disposed on the plurality of color filters. A low refractive index material is disposed over the image sensor chip, wherein the low refractive index material covers the plurality of micro lenses, and wherein a refractive index of the low refractive index material is lower than a refractive index of the plurality of micro lenses. A cover glass is disposed directly on the low refractive index material, wherein no air gap is between the cover glass and the low refractive index material, and between the low refractive index material and the image sensor chip. Therefore, the cover glass is fully supported by the low refractive index material without any dams.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: May 21, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Chen-Wei Lu, Jin Li, Chia-Chun Miao, Ming Zhang, Dyson Tai
  • Publication number: 20190140005
    Abstract: A chip scale package (CSP) structure for an image sensor comprises an image sensor chip, wherein the image sensor chip comprises a semiconductor substrate having a top surface to receive light, a plurality of color filters disposed over the top surface, and a plurality of micro lenses disposed on the plurality of color filters. A low refractive index material is disposed over the image sensor chip, wherein the low refractive index material covers the plurality of micro lenses, and wherein a refractive index of the low refractive index material is lower than a refractive index of the plurality of micro lenses. A cover glass is disposed directly on the low refractive index material, wherein no air gap is between the cover glass and the low refractive index material, and between the low refractive index material and the image sensor chip. Therefore, the cover glass is fully supported by the low refractive index material without any dams.
    Type: Application
    Filed: November 8, 2017
    Publication date: May 9, 2019
    Inventors: Yin Qian, Chen-Wei Lu, Jin Li, Chia-Chun Miao, Ming Zhang, Dyson Tai
  • Publication number: 20190115388
    Abstract: An image sensor includes a plurality of photodiodes disposed in a semiconductor material to convert image light into image charge. A floating diffusion is disposed proximate to the plurality of photodiodes to receive the image charge from the plurality of photodiodes. A plurality of transfer transistors is coupled to transfer the image charge from the plurality of photodiodes into the floating diffusion in response to a voltage applied to the gate terminal of the plurality of transfer transistors. A first trench isolation structure extends from a frontside of the semiconductor material into the semiconductor material and surrounds the plurality of photodiodes. A second trench isolation structure extends from a backside of the semiconductor material into the semiconductor material. The second trench isolation structure is disposed between individual photodiodes in the plurality of photodiodes.
    Type: Application
    Filed: October 18, 2017
    Publication date: April 18, 2019
    Inventors: Young Woo Jung, Lindsay Grant, Dyson Tai, Vincent Venezia, Wei Zheng
  • Publication number: 20190109169
    Abstract: An image sensor includes a photodiode disposed in a first semiconductor material to absorb photons incident on the image sensor and generate image charge. A floating diffusion is disposed in the first semiconductor material and positioned to receive the image charge from the photodiode, and a transfer transistor is coupled between the photodiode and the floating diffusion to transfer the image charge out of the photodiode into floating diffusion in response to a transfer signal. A source follower transistor with a gate terminal is coupled to the floating diffusion to output an amplified signal of the image charge in the floating diffusion. The gate terminal includes a second semiconductor material in contact with the floating diffusion, and a gate oxide is partially disposed between the second semiconductor material and the first semiconductor material. The second semiconductor material extends beyond the lateral bounds of the floating diffusion.
    Type: Application
    Filed: October 2, 2018
    Publication date: April 11, 2019
    Inventors: Xin Wang, Dajiang Yang, Siguang Ma, Keiji Mabuchi, Bill Phan, Duli Mao, Dyson Tai
  • Patent number: 10181490
    Abstract: A multi-color HDR image sensor includes at least a first combination color pixel with a first color filter and an adjacent second combination color pixel with a second color filter which is different from the first color filter, wherein each combination color pixel includes at least two sub-pixels having at least two adjacent photodiodes. Within each combination color pixel, there is a dielectric deep trench isolation (d-DTI) structure to isolate the two adjacent photodiodes of the two adjacent sub-pixels with same color filters in order to prevent the electrical cross talk. Between two adjacent combination color pixels with different color filters, there is a hybrid deep trench isolation (h-DTI) structure to isolate two adjacent photodiodes of two adjacent sub-pixels with different color filters in order to prevent both optical and electrical cross talk. Each combination color pixel is enclosed on all sides by the hybrid deep trench isolation (h-DTI) structure.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: January 15, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Kazufumi Watanabe, Chih-Wei Hsiung, Dyson Tai, Lindsay Grant