Patents by Inventor Dyson Tai

Dyson Tai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190115388
    Abstract: An image sensor includes a plurality of photodiodes disposed in a semiconductor material to convert image light into image charge. A floating diffusion is disposed proximate to the plurality of photodiodes to receive the image charge from the plurality of photodiodes. A plurality of transfer transistors is coupled to transfer the image charge from the plurality of photodiodes into the floating diffusion in response to a voltage applied to the gate terminal of the plurality of transfer transistors. A first trench isolation structure extends from a frontside of the semiconductor material into the semiconductor material and surrounds the plurality of photodiodes. A second trench isolation structure extends from a backside of the semiconductor material into the semiconductor material. The second trench isolation structure is disposed between individual photodiodes in the plurality of photodiodes.
    Type: Application
    Filed: October 18, 2017
    Publication date: April 18, 2019
    Inventors: Young Woo Jung, Lindsay Grant, Dyson Tai, Vincent Venezia, Wei Zheng
  • Publication number: 20190109169
    Abstract: An image sensor includes a photodiode disposed in a first semiconductor material to absorb photons incident on the image sensor and generate image charge. A floating diffusion is disposed in the first semiconductor material and positioned to receive the image charge from the photodiode, and a transfer transistor is coupled between the photodiode and the floating diffusion to transfer the image charge out of the photodiode into floating diffusion in response to a transfer signal. A source follower transistor with a gate terminal is coupled to the floating diffusion to output an amplified signal of the image charge in the floating diffusion. The gate terminal includes a second semiconductor material in contact with the floating diffusion, and a gate oxide is partially disposed between the second semiconductor material and the first semiconductor material. The second semiconductor material extends beyond the lateral bounds of the floating diffusion.
    Type: Application
    Filed: October 2, 2018
    Publication date: April 11, 2019
    Inventors: Xin Wang, Dajiang Yang, Siguang Ma, Keiji Mabuchi, Bill Phan, Duli Mao, Dyson Tai
  • Patent number: 10181490
    Abstract: A multi-color HDR image sensor includes at least a first combination color pixel with a first color filter and an adjacent second combination color pixel with a second color filter which is different from the first color filter, wherein each combination color pixel includes at least two sub-pixels having at least two adjacent photodiodes. Within each combination color pixel, there is a dielectric deep trench isolation (d-DTI) structure to isolate the two adjacent photodiodes of the two adjacent sub-pixels with same color filters in order to prevent the electrical cross talk. Between two adjacent combination color pixels with different color filters, there is a hybrid deep trench isolation (h-DTI) structure to isolate two adjacent photodiodes of two adjacent sub-pixels with different color filters in order to prevent both optical and electrical cross talk. Each combination color pixel is enclosed on all sides by the hybrid deep trench isolation (h-DTI) structure.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: January 15, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Kazufumi Watanabe, Chih-Wei Hsiung, Dyson Tai, Lindsay Grant
  • Publication number: 20180366513
    Abstract: A single-exposure high dynamic range (HDR) image sensor includes a first photodiode and a second photodiode, with a smaller full-well capacity than the first photodiode, disposed in a semiconductor material. The image sensor also includes a first floating diffusion disposed in the semiconductor material and a first transfer gate coupled to the first photodiode to transfer first image charge accumulated in the first photodiode into the first floating diffusion. A second floating diffusion is disposed in the semiconductor material and a second transfer gate is coupled to the second photodiode to transfer second image charge accumulated in the second photodiode into the second floating diffusion. An attenuation layer is disposed between the second photodiode and image light directed towards the single-exposure HDR image sensor to block a portion of the image light from reaching the second photodiode.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 20, 2018
    Inventors: Dajiang Yang, Oray Orkun Cellek, Duli Mao, Xianfu Cheng, Xin Wang, Bill Phan, Dyson Tai
  • Patent number: 10128299
    Abstract: An image sensor includes a photodiode disposed in a first semiconductor material to absorb photons incident on the image sensor and generate image charge. A floating diffusion is disposed in the first semiconductor material and positioned to receive the image charge from the photodiode, and a transfer transistor is coupled between the photodiode and the floating diffusion to transfer the image charge out of the photodiode into floating diffusion in response to a transfer signal. A source follower transistor with a gate terminal is coupled to the floating diffusion to output an amplified signal of the image charge in the floating diffusion. The gate terminal includes a second semiconductor material in contact with the floating diffusion, and a gate oxide is partially disposed between the second semiconductor material and the first semiconductor material. The second semiconductor material extends beyond the lateral bounds of the floating diffusion.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: November 13, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Xin Wang, Dajiang Yang, Siguang Ma, Keiji Mabuchi, Bill Phan, Duli Mao, Dyson Tai
  • Publication number: 20180286895
    Abstract: A multi-color HDR image sensor includes at least a first combination color pixel with a first color filter and an adjacent second combination color pixel with a second color filter which is different from the first color filter, wherein each combination color pixel includes at least two sub-pixels having at least two adjacent photodiodes. Within each combination color pixel, there is a dielectric deep trench isolation (d-DTI) structure to isolate the two adjacent photodiodes of the two adjacent sub-pixels with same color filters in order to prevent the electrical cross talk. Between two adjacent combination color pixels with different color filters, there is a hybrid deep trench isolation (h-DTI) structure to isolate two adjacent photodiodes of two adjacent sub-pixels with different color filters in order to prevent both optical and electrical cross talk. Each combination color pixel is enclosed on all sides by the hybrid deep trench isolation (h-DTI) structure.
    Type: Application
    Filed: April 3, 2017
    Publication date: October 4, 2018
    Inventors: Kazufumi Watanabe, Chih-Wei Hsiung, Dyson Tai, Lindsay Grant
  • Patent number: 9991309
    Abstract: An image sensor comprises a semiconductor material having an illuminated surface and a non-illuminated surface; a photodiode formed in the semiconductor material extending from the illuminated surface to receive an incident light through the illuminated surface, wherein the received incident light generates charges in the photodiode; a transfer gate electrically coupled to the photodiode to transfer the generated charges from the photodiode in response to a transfer signal; a floating diffusion electrically coupled to the transfer gate to receive the transferred charges from the photodiode; a near infrared (NIR) quantum efficiency (QE) enhancement structure comprising at least two NIR QE enhancement elements within a region of the photodiode, wherein the NIR QE enhancement structure is configured to modify the incident light at the illuminated surface of the semiconductor material by at least one of diffraction, deflection and reflection, to redistribute the incident light within the photodiode to improve an
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: June 5, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Cunyu Yang, Cheng Zhao, Gang Chen, Dyson Tai, Chen-Wei Lu
  • Patent number: 9773829
    Abstract: A method of image sensor fabrication includes providing a semiconductor material, an insulation layer, and a logic layer, where the semiconductor material includes a plurality of photodiodes. A through-semiconductor-via is formed which extends from the semiconductor material, through the insulation layer, and into the logic layer. The through-semiconductor-via is capped with a capping layer. A metal pad is disposed in a first trench in the semiconductor material. Insulating material is deposited on the capping layer, and in the first trench in the semiconductor material. A resist is deposited in a second trench in the insulating material, and the second trench in the insulating material is aligned with the metal pad. The insulating material is removed to expose the capping layer, and a portion of the capping layer disposed proximate to the plurality of photodiodes is also removed. A metal grid is formed proximate to the plurality of photodiodes.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: September 26, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yuanwei Zheng, Gang Chen, Duli Mao, Dyson Tai
  • Publication number: 20170221951
    Abstract: A method of image sensor fabrication includes providing a semiconductor material, an insulation layer, and a logic layer, where the semiconductor material includes a plurality of photodiodes. A through-semiconductor-via is formed which extends from the semiconductor material, through the insulation layer, and into the logic layer. The through-semiconductor-via is capped with a capping layer. A metal pad is disposed in a first trench in the semiconductor material. Insulating material is deposited on the capping layer, and in the first trench in the semiconductor material. A resist is deposited in a second trench in the insulating material, and the second trench in the insulating material is aligned with the metal pad. The insulating material is removed to expose the capping layer, and a portion of the capping layer disposed proximate to the plurality of photodiodes is also removed. A metal grid is formed proximate to the plurality of photodiodes.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 3, 2017
    Inventors: Yuanwei Zheng, Gang Chen, Duli Mao, Dyson Tai
  • Patent number: 9691810
    Abstract: An image sensor includes a plurality of photodiodes arranged in an array and disposed in a semiconductor material with pinning wells disposed between individual photodiodes in the plurality of photodiodes. The image sensor also includes a microlens layer. The microlens layer is disposed proximate to the semiconductor material and is optically aligned with the plurality of photodiodes. A spacer layer disposed between the semiconductor material and the microlens layer. The spacer layer has a concave cross-sectional profile across the array, and the microlens layer is conformal with the concave cross-sectional profile of the spacer layer.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: June 27, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yuanwei Zheng, Gang Chen, Duli Mao, Dyson Tai, Arvind Kumar, Hung Chih Chang, Chih-Wei Hsiung
  • Publication number: 20170179189
    Abstract: An image sensor includes a plurality of photodiodes arranged in an array and disposed in a semiconductor material with pinning wells disposed between individual photodiodes in the plurality of photodiodes. The image sensor also includes a microlens layer. The microlens layer is disposed proximate to the semiconductor material and is optically aligned with the plurality of photodiodes. A spacer layer disposed between the semiconductor material and the microlens layer. The spacer layer has a concave cross-sectional profile across the array, and the microlens layer is conformal with the concave cross-sectional profile of the spacer layer.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Yuanwei Zheng, Gang Chen, Duli Mao, Dyson Tai, Arvind Kumar, Hung Chih Chang, Chih-Wei Hsiung
  • Patent number: 9564470
    Abstract: A method of image sensor fabrication includes forming a layer of dielectric material, a layer of gate material, and a layer of hard mask material. The layer of dielectric material is disposed between the layer of gate material and a semiconductor material, and the layer of gate material is disposed between the layer of hard mask material and the layer of dielectric material. The method also includes etching the layer of hard mask material and layer of gate material, and etching forms a transfer gate from the layer of gate material. An encapsulation material is deposited proximate to a surface of the semiconductor material. Trenches are etched in the encapsulation material. A first trench extends through the encapsulation material and the layer of dielectric material, and a second trench extends through the encapsulation material and the layer of hard mask material.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: February 7, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Yuanwei Zheng, Duli Mao, Dyson Tai
  • Patent number: 9484373
    Abstract: An image sensor includes a semiconductor material with a photodiode disposed in the semiconductor material, and a transfer gate disposed adjacent to an edge of the photodiode. A dielectric layer is also disposed between the semiconductor material and the transfer gate. A hard mask is disposed in an encapsulation layer and lateral bounds of the hard mask are coextensive with lateral bounds of the transfer gate. A first contact trench extends through the encapsulation layer and through the dielectric layer and contacts the semiconductor material. A second contact trench extends through the encapsulation layer and through the hard mask and contacts the transfer gate.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: November 1, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Yuanwei Zheng, Duli Mao, Dyson Tai
  • Patent number: 9312299
    Abstract: An image sensor pixel includes a photosensitive element, a floating diffusion region, a transfer gate, a dielectric charge trapping region, and a first metal contact. The photosensitive element is disposed in a semiconductor layer to receive electromagnetic radiation along a vertical axis. The floating diffusion region is disposed in the semiconductor layer, while the transfer gate is disposed on the semiconductor layer to control a flow of charge produced in the photosensitive element to the floating diffusion region. The dielectric charge trapping device is disposed on the semiconductor layer to receive electromagnetic radiation along the vertical axis and to trap charges in response thereto. The dielectric charge trapping device is further configured to induce charge in the photosensitive element in response to the trapped charges. The first metal contact is coupled to the dielectric charge trapping device to provide a first bias voltage to the dielectric charge trapping device.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: April 12, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Oray Orkun Cellek, Dajiang Yang, Sing-Chung Hu, Philip John Cizdziel, Dyson Tai, Gang Chen, Cunyu Yang, Zhiqiang Lin
  • Publication number: 20150295007
    Abstract: An image sensor pixel includes a photosensitive element, a floating diffusion region, a transfer gate, a dielectric charge trapping region, and a first metal contact. The photosensitive element is disposed in a semiconductor layer to receive electromagnetic radiation along a vertical axis. The floating diffusion region is disposed in the semiconductor layer, while the transfer gate is disposed on the semiconductor layer to control a flow of charge produced in the photosensitive element to the floating diffusion region. The dielectric charge trapping device is disposed on the semiconductor layer to receive electromagnetic radiation along the vertical axis and to trap charges in response thereto. The dielectric charge trapping device is further configured to induce charge in the photosensitive element in response to the trapped charges. The first metal contact is coupled to the dielectric charge trapping device to provide a first bias voltage to the dielectric charge trapping device.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 15, 2015
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Oray Orkun Cellek, Dajiang Yang, Sing-Chung Hu, Philip John Cizdziel, Dyson Tai, Gang Chen, Cunyu Yang, Zhiqiang Lin
  • Publication number: 20110101201
    Abstract: Photodetectors, photodetector arrays, image sensors, and other apparatus are disclosed. An apparatus, of one aspect, may include a surface to receive light, a photosensitive region disposed within a substrate, and a material coupled between the surface and the photosensitive region. The material may receive the light. At least some of the light may free electrons in the material. An electron lens coupled between the surface and the material may focus the electrons in the material toward the photosensitive region. Other apparatus are also disclosed, as are methods of using such apparatus, methods of fabricating such apparatus, and systems incorporating such apparatus.
    Type: Application
    Filed: November 4, 2009
    Publication date: May 5, 2011
    Inventors: Vincent Venezia, Duli Mao, Dyson Tai, Yin Qian
  • Patent number: 7825966
    Abstract: An image sensor has at least two photodiodes in each unit pixel. A high dynamic range is achieved by selecting different exposure times for the photodiodes. Additionally, blooming is reduced. The readout timing cycle is chosen so that the short exposure time photodiodes act as drains for excess charge overflowing from the long exposure time photodiodes. To improve draining of excess charge, the arrangement of photodiodes may be further selected so that long exposure time photodiodes are neighbored along vertical and horizontal directions by short exposure time photodiodes. A micro-lens array may also be provided in which light is preferentially coupled to the long exposure time photodiodes to improve sensitivity.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: November 2, 2010
    Assignee: OmniVision Technologies, Inc.
    Inventors: Sohei Manabe, Ashish Shah, Sasidhar Saladi, William Qian, Hidetoshi Nozaki, Nagaraja Satyadev, Hsin-Chih (Dyson) Tai, Howard M. Rhodes
  • Publication number: 20090002528
    Abstract: An image sensor has at least two photodiodes in each unit pixel. A high dynamic range is achieved by selecting different exposure times for the photodiodes. Additionally, blooming is reduced. The readout timing cycle is chosen so that the short exposure time photodiodes act as drains for excess charge overflowing from the long exposure time photodiodes. To improve draining of excess charge, the arrangement of photodiodes may be further selected so that long exposure time photodiodes are neighbored along vertical and horizontal directions by short exposure time photodiodes. A micro-lens array may also be provided in which light is preferentially coupled to the long exposure time photodiodes to improve sensitivity.
    Type: Application
    Filed: October 15, 2007
    Publication date: January 1, 2009
    Inventors: Sohei Manabe, Ashish Shah, Sasidhar Saladi, William Qian, Hidetoshi Nozaki, Nagaraja Satyadev, Hsin-Chih Dyson Tai, Howard M. Rhodes