Patents by Inventor Earl Jensen

Earl Jensen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9322559
    Abstract: A fuel nozzle for use in a gas turbine includes a pre-mix flow passage for directing a flow segment of a flow of a working fluid through the fuel nozzle. A first swirler vane and a second swirler vane extend within the pre-mix flow passage. The first swirler vane provides a first wake region within the flow segment. The second swirler vane provides a second wake region within the flow segment. A fuel injection peg is disposed downstream from the first swirler vane and the second swirler vane. The fuel injection peg is positioned within the flow segment between the first wake region and the second wake region.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: April 26, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Mark William Pinson, Gregory Earl Jensen, Jason Charles Terry
  • Patent number: 9304160
    Abstract: Aspects of the present disclosure describe an inspection apparatus which performs inspection on a smaller field of a wafer with structures for current collection. The defective via holes may be located based on the collected current. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: May 3, 2013
    Date of Patent: April 5, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Earl Jensen, Christopher Kirk
  • Patent number: 9305753
    Abstract: An etch rate monitor apparatus has a substrate, an optical element and one or more optical detectors mounted to a common substrate with the one or more detectors sandwiched between the substrate and optical element to detect changes in optical interference signal resulting from changes in optical thickness of the optical element. The optical element is made of a material that allows transmission of light of a wavelength of interest. A reference waveform and data waveform can be collected with the apparatus and cross-correlated to determine a thickness change. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: April 5, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Earl Jensen, Kevin O'Brien
  • Patent number: 9222842
    Abstract: Aspects of the present disclosure disclose a component module in a process condition measuring device comprises a support for supporting a component, one or more legs configured to suspend the support in a spaced-apart relationship with respect to a substrate. An electrically conductive or low-resistivity semiconductor enclosure is configured to enclose the component, the support and the legs between the substrate and the enclosure. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: December 29, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Mei Sun, Earl Jensen, Farhat Quli, Stephen Sharratt
  • Patent number: 9140604
    Abstract: A sensor apparatus for measuring characteristics of optical radiation has a substrate and a low profile spectrally selective detection system located within the substrate at one or more spatially separated locations. The spectrally selective detection system includes a generally laminar array of wavelength selectors optically coupled to a corresponding array of optical detectors. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: September 22, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Earl Jensen, Mei Sun, Kevin O'Brien
  • Patent number: 9134186
    Abstract: A process condition measuring device (PCMD) may include first and second substrate components. One or more temperature sensors are embedded within each substrate component. The first and second substrate components are sandwiched together such that each temperature sensor in the second substrate component is aligned in tandem with a corresponding temperature sensor located in the first substrate component. Alternatively first and second temperature sensors may be positioned in parallel in the same substrate. Temperature differences may be measured between pairs of corresponding temperature sensors when the PCMD is subjected to process conditions in a workpiece processing tool. Process conditions in the tool may be calculated from the temperature differences.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: September 15, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Mei Sun, Farhat Quli, Earl Jensen, Paul Arleo, Vaibhaw Vishal
  • Publication number: 20150176980
    Abstract: Some aspects of the present disclosure relate to a system having a substrate device, a substrate support surface, and a substrate handler that positions the substrate device on the substrate support surface. The substrate device and the substrate support surface may have counterpart coarse position units and fine position units. The system may measure coarse positional offsets between the first and second coarse position units, re-position the substrate device on the substrate support surface based on the coarse positional offsets, and subsequently measure fine positional offsets between the first and second fine position units. In some implementations, the substrate device is integrally coupled to the substrate handler via a wireless communication link in order to communicate position information as feedback for further placement.
    Type: Application
    Filed: November 7, 2014
    Publication date: June 25, 2015
    Inventors: Earl Jensen, Kevin O'Brien
  • Patent number: 9003806
    Abstract: A method of operating a combustor having a central nozzle and a plurality of outer nozzles surrounding the central nozzle is provided. The method includes providing a liquid fuel to only the plurality of outer nozzles at a specified total energy input. The method includes decreasing the liquid fuel to the plurality of outer nozzles while simultaneously increasing a gas fuel to the central nozzle and the plurality of outer nozzles to substantially maintain the specified total energy input. The method includes supplying a fuel-air ratio of the gas fuel to the central nozzle that exceeds a threshold value such that a central nozzle flame is anchored. An air-fuel ratio of the gas fuel to the plurality of outer nozzles is less than the threshold value such that a plurality of outer nozzle flames are lifted until a purge flow is supplied to the outer nozzles.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: April 14, 2015
    Assignee: General Electric Company
    Inventors: Gregory Earl Jensen, Mark William Pinson, William Thomas Ross
  • Publication number: 20150020972
    Abstract: A sensing device for measuring a plasma process parameter in a plasma chamber for processing workpieces may include a substrate with one or more sensor embedded in the substrate. The substrate can have a surface made of substantially the same material as workpieces that are plasma processed in the plasma chamber. Each sensor can include a collector portion made of substantially the same material as the substrate surface. The collector portion includes a surface that is level with the surface of the substrate. Sensor electronics are embedded into the substrate and coupled to the collector portion. When the substrate surface is exposed to a plasma one or more signals resulting from the plasma can be measured with the sensor(s).
    Type: Application
    Filed: October 2, 2014
    Publication date: January 22, 2015
    Inventors: Earl Jensen, Mei Sun
  • Publication number: 20140366541
    Abstract: A gas turbine engine having a combustor that includes: an inner radial wall defining a first interior chamber and a second interior chamber, wherein the first interior chamber extends axially from an end cover to a primary fuel injector, and the second interior chamber extends axially from the primary fuel injector to the turbine; an outer radial wall formed about the inner radial wall so that a flow annulus is formed therebetween; upstream fuel nozzles jutting into the flow annulus from the outer radial wall. The upstream fuel nozzles may include non-uniform circumferential spacing about the inner radial wall.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 18, 2014
    Inventors: Gregory Earl Jensen, Bryan Wesley Romig, Jason Thurman Stewart, Jason Charles Terry
  • Publication number: 20140355643
    Abstract: A heat flux sensor equipped measurement wafer includes a substrate, a cover thermally coupled to a portion of the substrate, a sensor cavity formed between the substrate and the cover, a thermal barrier disposed within at least a portion of the sensor cavity, a bottom temperature sensor thermally coupled to the substrate and insulated from the cover by a portion of the thermal barrier and a top temperature sensor thermally coupled to the cover and insulated from the substrate by an additional portion of the thermal barrier, wherein a temperature difference between the bottom temperature sensor and the top temperature sensor is related to a heat flux passing through the substrate and cover proximate to the sensor cavity.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 4, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: Stephen Sharratt, Farhat Quli, Earl Jensen, Mei Sun
  • Patent number: 8889021
    Abstract: A sensing device for measuring a plasma process parameter in a plasma chamber for processing workpieces may include a substrate with one or more sensor embedded in the substrate. The substrate can have a surface made of substantially the same material as workpieces that are plasma processed in the plasma chamber. Each sensor can include a collector portion made of substantially the same material as the substrate surface. The collector portion includes a surface that is level with the surface of the substrate. Sensor electronics are embedded into the substrate and coupled to the collector portion. When the substrate surface is exposed to a plasma one or more signals resulting from the plasma can be measured with the sensor(s).
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: November 18, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Earl Jensen, Mei Sun
  • Publication number: 20140311150
    Abstract: A fuel nozzle for use in a gas turbine includes a pre-mix flow passage for directing a flow segment of a flow of a working fluid through the fuel nozzle. A first swirler vane and a second swirler vane extend within the pre-mix flow passage. The first swirler vane provides a first wake region within the flow segment. The second swirler vane provides a second wake region within the flow segment. A fuel injection peg is disposed downstream from the first swirler vane and the second swirler vane. The fuel injection peg is positioned within the flow segment between the first wake region and the second wake region.
    Type: Application
    Filed: April 17, 2013
    Publication date: October 23, 2014
    Applicant: General Electric Company
    Inventors: Mark William Pinson, Gregory Earl Jensen, Jason Charles Terry
  • Publication number: 20140253928
    Abstract: An etch rate monitor apparatus has a substrate, an optical element and one or more optical detectors mounted to a common substrate with the one or more detectors sandwiched between the substrate and optical element to detect changes in optical interference signal resulting from changes in optical thickness of the optical element. The optical element is made of a material that allows transmission of light of a wavelength of interest. A reference waveform and data waveform can be collected with the apparatus and cross-correlated to determine a thickness change. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 11, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: Earl Jensen, Kevin O'Brien
  • Publication number: 20140192840
    Abstract: Aspects of the present disclosure disclose a component module in a process condition measuring device comprises a support for supporting a component, one or more legs configured to suspend the support in a spaced-apart relationship with respect to a substrate. An electrically conductive or low-resistivity semiconductor enclosure is configured to enclose the component, the support and the legs between the substrate and the enclosure. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: March 6, 2013
    Publication date: July 10, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: Mei Sun, Earl Jensen, Farhat Quli, Stephen Sharratt
  • Publication number: 20140182297
    Abstract: A gas turbine includes a compressor section, a combustion section downstream from the compressor section, a turbine section downstream from the combustion section, and a controller. The controller controls the operation of the gas turbine at a reduced load, and is capable of querying a database including multiple sets of operational parameters for the gas turbine correlated with at least one measured output response at each set of operational parameters. One of the sets of operational parameters provides a desired gas turbine load that meets a target level for the output response. Related methods are also disclosed.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jason Charles Terry, Timothy Andrew Healy, Mark William Pinson, Gregory Earl Jensen
  • Publication number: 20140122654
    Abstract: Aspects of the present disclosure describe a smart docking station. The smart docking station may contain a data transfer and an electrical connection which allow a sensor wafer to be charged and to upload and download data. The smart docking station may be located at an off-track storage position above a tool. This location enables an automated materials handling system (AMHS) to retrieve the sensor wafer and deliver it to a tool requiring analysis. The sensor wafer may be stored in a smart front opening unified pod (FOUP). It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 1, 2014
    Applicant: KLA-Tencor Corporation
    Inventor: Earl Jensen
  • Publication number: 20140096526
    Abstract: An end cover for a gas turbine combustor includes a main body configured to connect to a casing that at least partially surrounds a portion of the gas turbine. A fuel circuit extends within the main body of the end cover. An orifice extends through the main body. The orifice is in fluid communication with the fuel circuit. The end cover further includes a linear actuator. The linear actuator includes a flow control member that extends the fuel circuit and at least partially through the orifice.
    Type: Application
    Filed: October 8, 2012
    Publication date: April 10, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Elias Marquez, Gregory Earl Jensen
  • Publication number: 20130227956
    Abstract: A method of operating a combustor having a central nozzle and a plurality of outer nozzles surrounding the central nozzle is provided. The method includes providing a liquid fuel to only the plurality of outer nozzles at a specified total energy input. The method includes decreasing the liquid fuel to the plurality of outer nozzles while simultaneously increasing a gas fuel to the central nozzle and the plurality of outer nozzles to substantially maintain the specified total energy input. The method includes supplying a fuel-air ratio of the gas fuel to the central nozzle that exceeds a threshold value such that a central nozzle flame is anchored. An air-fuel ratio of the gas fuel to the plurality of outer nozzles is less than the threshold value such that a plurality of outer nozzle flames are lifted until a purge flow is supplied to the outer nozzles.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 5, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Gregory Earl Jensen, Mark William Pinson, William Thomas Ross
  • Publication number: 20130155390
    Abstract: A measurement unit comprising a light source and a photodetector may be formed in a cavity in a substrate. The light source produces light that impinges a material layer and is reflected back to the photodetector. Through methods such as interferometry and ellipsometry, the thickness of the material layer may be calculated from the light intensity data measured by the photodetector. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: November 16, 2012
    Publication date: June 20, 2013
    Inventors: Earl Jensen, Kevin O'Brien, Farhat Quli, Mei Sun