Patents by Inventor Edgar Mueller

Edgar Mueller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200309877
    Abstract: A magnet assembly for magnetic resonance imaging is used to generate the basic magnetic field with a strength needed to produce the steady state or equilibrium position of nuclei or nuclear spins in magnetic resonance imaging. This magnet, or a part thereof, is vibrated or tilted or otherwise periodically moved so as to change its position and thereby generate a time-varying gradient field, which is used to enter the acquired magnetic resonance signals as raw data into k-space.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Applicants: Siemens Healthcare GmbH, Yale University
    Inventors: Markus Vester, Peter Speier, Stefan Popescu, Edgar Mueller, Robert Todd Constable, Gigi Galiana
  • Patent number: 10768256
    Abstract: In a method for displaying quantitative magnetic resonance image data, and a processor, and a magnetic resonance (MR) apparatus that implement such a method, first quantitative MR image data of an examination object are provided to the processor, the first quantitative MR image having been obtained using an MR scanner with a first basic magnetic field strength. The first quantitative magnetic resonance image data are converted in the processor from the first basic magnetic field strength to a second basic magnetic field strength, thereby generating second quantitative MR image data, which are then displayed.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: September 8, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Berthold Kiefer, Lars Lauer, Heiko Meyer, Edgar Mueller, Elmar Rummert, David Grodzki
  • Publication number: 20200275858
    Abstract: In a method for controlling a magnetic resonance imaging system as part of functional magnetic resonance imaging, a main magnetic field B0 is provided having a field strength of at most 1.4 tesla at a main field magnet system (4) of the magnetic resonance imaging system (1); and a measurement is performed as part of functional magnetic resonance imaging, wherein a measurement sequence (MS) is applied that has a longer echo time TE (e.g. longer than 100 ms).
    Type: Application
    Filed: February 28, 2020
    Publication date: September 3, 2020
    Applicant: Siemens Healthcare GmbH
    Inventors: Edgar Mueller, Andreas Greiser, Peter Speier
  • Publication number: 20200254484
    Abstract: The present invention relates to the field of optical effect layers (OEL) comprising magnetically oriented non-spherical oblate magnetic or magnetizable pigment particles on a substrate, spinneable magnetic assemblies and processes for producing said optical effect layers (OEL). In particular, the present invention relates to spinneable magnetic assemblies and processes for producing said OELs as anti-counterfeit means on security documents or security articles or for decorative purposes.
    Type: Application
    Filed: August 23, 2018
    Publication date: August 13, 2020
    Inventors: Cédric AMERASINGHE, Edgar MUELLER, Evgeny LOGINOV, Mathieu SCHMID, Claude-Alain DESPLAND
  • Publication number: 20200246828
    Abstract: The present invention relates to the field of apparatuses and methods of producing optical effect layers (OEL) comprising magnetically oriented magnetic or magnetizable pigment particles. In particular, the present invention relates to apparatuses comprising a first block (A) comprising a holder (1a) having mounted thereto a stator comprising n magnet-wire coils (1b) disposed in n annular slots of a magnetic-field-guiding stator core (1c), and a second block (B) comprising a casing (4), a rotor protection plate (2), a rotor comprising m permanent magnet poles (3a) of alternating polarity arranged around a circle in or on one side of a rotor disc (3b), and a permanent magnet assembly (PMA) (5), wherein the holder (A) is configured to be removeably fixed to a base of a rotating magnetic orienting cylinder (RMC) or a flatbed (FB) magnetic orienting printing unit and the second block (B) is removeably fixed to the first block (A).
    Type: Application
    Filed: January 17, 2018
    Publication date: August 6, 2020
    Inventors: Edgar MUELLER, Evgeny LOGINOV, Mathieu SCHMID
  • Publication number: 20200247173
    Abstract: The present invention relates to the field of optical effect layers (OEL) comprising magnetically oriented non-spherical oblate magnetic or magnetizable pigment particles on a substrate, spinneable magnetic assemblies and processes for producing said optical effect layers (OEL). In particular, the present invention relates to spinneable magnetic assemblies and processes for producing said OELs as anti-counterfeit means on security documents or security articles or for decorative purposes.
    Type: Application
    Filed: August 23, 2018
    Publication date: August 6, 2020
    Inventors: Cédric AMERASINGHE, Edgar MUELLER, Evgeny LOGINOV, Mathieu SCHMID, Claude-Alain DESPLAND
  • Publication number: 20200215844
    Abstract: The present invention relates to the field of optical effect layers (OEL) comprising magnetically oriented non-spherical oblate magnetic or magnetizable pigment particles on a substrate, spinneable magnetic assemblies and processes for producing said optical effect layers (OEL). In particular, the present invention relates to spinneable magnetic assemblies and processes for producing said OELs as anti-counterfeit means on security documents or security articles or for decorative purposes.
    Type: Application
    Filed: August 23, 2018
    Publication date: July 9, 2020
    Inventors: Cédric AMERASINGHE, Edgar MUELLER, Evgeny LOGINOV, Mathieu SCHMID, Claude-Alain DESPLAND
  • Patent number: 10663547
    Abstract: In a method and apparatus for determining measurement protocol parameters of a magnetic resonance (MR) image, a first MR image exhibiting first contrast properties, is read into a computer and at least one first contrast ratio is determined in the computer from the first contrast properties. The computer then determines the measurement protocol parameters dependent on the at least one first contrast ratio, in order to generate a second MR image exhibiting second contrast properties such that the second contrast properties approximate, as closely as possible, to the first contrast properties. The measurement protocol parameters are presented as an output from the computer.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: May 26, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: David Grodzki, Donald Hardie, Katharina Hesels, Lars Lauer, Edgar Mueller
  • Patent number: 10663546
    Abstract: In a method and magnetic resonance apparatus for recording diagnostic measurement data of a heart of an examination object, the magnetic resonance apparatus is operated by a control sequence wherein an RF pulse excites nuclear spins with a flip angle of at least 60°, the diagnostic measurement data are recorded in a coordinate system independent of the heart, and the basic magnetic field produced by the magnetic resonance apparatus is smaller than 1.0 tesla.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: May 26, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Christoph Forman, Edgar Mueller, Michaela Schmidt, Jens Wetzl
  • Publication number: 20200130049
    Abstract: A description is given of a method for producing a molding material mixture or for producing a molding material mixture and a molding therefrom, preferably casting molds or cores, for use in the foundry industry, where the molding material mixture comprises a mold base material and a solution or dispersion comprising lithium-containing waterglass, comprising the following steps: (1) producing or providing a kit at least comprising as separate components: (K1) an aqueous solution or dispersion comprising waterglass and (K2a) a first waterglass-free solution or dispersion comprising lithium ions in solution in water, and also preferably (K2b) a second waterglass-free solution or dispersion, preferably o comprising lithium ions in solution in water with a lower concentration than in component (K2a), and thereafter (2) producing a mixture of the mold base material with a fraction of component (K1) and with a fraction of component (K2a), and also optionally with a fraction of component (K2b).
    Type: Application
    Filed: June 28, 2018
    Publication date: April 30, 2020
    Applicant: HÜTTENES-ALBERTUS CHEMISCHE WERKE GESELLSCHAFT MIT BESCHRÄNKTER HAFTUNG
    Inventors: Christian LUSTIG, Marcin BALDY, Edgar MÜLLER, Lukas Mirko REINOLD, Sabrina Maria ANDERTEN, Maria SCHWEINEFUß, René VARGOVIC
  • Publication number: 20190283079
    Abstract: The present invention relates to the field of the protection of value documents and value commercial goods. In particular, the invention relates to methods of making an optical effect layer (OEL) associated with a substrate, the method comprising i) providing a substrate associated with a coating composition comprising magnetic or magnetizable pigment particles; ii) providing a permanent magnet assembly producing a first magnetic field; iii) providing an electromagnet assembly including a winding assembly and drive producing an oscillating or rotating second magnetic field that interacts with the first magnetic field to spin the permanent magnet assembly to rotate the first magnetic field; and iv) applying the first magnetic field whilst the first magnetic field rotates by spinning of the permanent magnet assembly to aggregately orient the magnetic or magnetizable pigment particles to create the optical effect layer. The invention also relates to apparatuses for creating an OEL.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Inventors: Pierre DEGOTT, Mathieu SCHMID, Claude-Alain DESPLAND, Evgeny LOGINOV, Edgar MUELLER
  • Patent number: 10391519
    Abstract: The present invention relates to the field of the protection of value documents and value commercial goods. In particular, the invention relates to methods of making an optical effect layer (OEL) associated with a substrate, the method comprising i) providing a substrate associated with a coating composition comprising magnetic or magnetizable pigment particles; ii) providing a permanent magnet assembly producing a first magnetic field; iii) providing an electromagnet assembly including a winding assembly and drive producing an oscillating or rotating second magnetic field that interacts with the first magnetic field to spin the permanent magnet assembly to rotate the first magnetic field; and iv) applying the first magnetic field while the first magnetic field rotates by spinning of the permanent magnet assembly to aggregately orient the magnetic or magnetizable pigment particles to create the optical effect layer. The invention also relates to apparatuses for creating an OEL.
    Type: Grant
    Filed: November 28, 2014
    Date of Patent: August 27, 2019
    Assignee: SICPA HOLDING SA
    Inventors: Pierre Degott, Mathieu Schmid, Claude-Alain Despland, Evgeny Loginov, Edgar Mueller
  • Patent number: 10275907
    Abstract: The invention concerns a method for reconstructing medical image data which has access to free capacities of at least two computers and manages the use thereof for the purposes of the reconstruction. The method is a particularly reliable alternative to the reconstruction of medical image data based on algorithms that would require a working memory of above-average size.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: April 30, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Christoph Forman, Rainer Kirsch, Christian Muehlhaeusser, Edgar Mueller, Peter Speier
  • Publication number: 20190041478
    Abstract: In a method and apparatus for determining measurement protocol parameters of a magnetic resonance (MR) image, a first MR image exhibiting first contrast properties, is read into a computer and at least one first contrast ratio is determined in the computer from the first contrast properties. The computer then determines the measurement protocol parameters dependent on the at least one first contrast ratio, in order to generate a second MR image exhibiting second contrast properties such that the second contrast properties approximate, as closely as possible, to the first contrast properties. The measurement protocol parameters are presented as an output from the computer.
    Type: Application
    Filed: August 1, 2018
    Publication date: February 7, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: David Grodzki, Donald Hardie, Katharina Hesels, Lars Lauer, Edgar Mueller
  • Patent number: 10054535
    Abstract: Disclosure relates to a method and a device for determining the distribution and orientation of platelet-shaped pigment particles over an extended region of an optical effect layer (OEL). The method includes a) taking at least one image, under illumination of said extended region of the optical effect layer with collimated light incident from at least one first direction, of reflected light of said extended region of the optical effect layer from at least one second direction, using a telecentric lens-and-camera assembly having the optical axis of the telecentric lens oriented along said second direction, and b) processing the at least one image of said extended region to extract quantitative particle distribution and orientation information.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: August 21, 2018
    Assignee: SICPA HOLDING SA
    Inventor: Edgar Mueller
  • Publication number: 20180217215
    Abstract: In a method and magnetic resonance apparatus for recording diagnostic measurement data of a heart of an examination object, the magnetic resonance apparatus is operated by a control sequence wherein an RF pulse excites nuclear spins with a flip angle of at least 60°, the diagnostic measurement data are recorded in a coordinate system independent of the heart, and the basic magnetic field produced by the magnetic resonance apparatus is smaller than 1.0 tesla.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 2, 2018
    Applicant: Siemens Healthcare GmbH
    Inventors: Christoph Forman, Edgar Mueller, Michaela Schmidt, Jens Wetzl
  • Publication number: 20170315200
    Abstract: In a method for displaying quantitative magnetic resonance image data, and a processor, and a magnetic resonance (MR) apparatus that implement such a method, first quantitative MR image data of an examination object are provided to the processor, the first quantitative MR image having been obtained using an MR scanner with a first basic magnetic field strength. The first quantitative magnetic resonance image data are converted in the processor from the first basic magnetic field strength to a second basic magnetic field strength, thereby generating second quantitative MR image data, which are then displayed.
    Type: Application
    Filed: April 28, 2017
    Publication date: November 2, 2017
    Applicant: Siemens Healthcare GmbH
    Inventors: Berthold Kiefer, Lars Lauer, Heiko Meyer, Edgar Mueller, Elmar Rummert, David Grodzki
  • Patent number: 9746538
    Abstract: Magnetic resonance imaging uses regularized SENSE reconstruction for a reduced field of view, but minimizes folding artifacts. A reference scan is oversampled relative to the reduced field of view. The oversampling provides coil sensitivity information for a region greater than the reduced field of view. The reconstruction of the object for the reduced field of view using the coil sensitivities for the larger region may have fewer folding artifacts.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: August 29, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Qiu Wang, Derya Gol Gungor, Michael Zenge, Marcel Dominik Nickel, Edgar Müller, Mariappan S. Nadar
  • Patent number: 9689947
    Abstract: A computer-implemented method of selecting a Magnetic Resonance Imaging (MRI) sampling strategy includes selecting a base variable-density sampling pattern and determining a scan time associated with the base variable-density sampling pattern. A modified variable-density sampling pattern is created by modifying one or more parameters of the base variable-density sampling pattern to maximize a sampled k-space area without increasing the scan time. Next, a scan is performed on an object of interest using the modified variable-density sampling pattern to obtain a sparse MRI dataset. Then a sparse reconstruction process is applied to the sparse MRI dataset to yield an image of the object of interest.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: June 27, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Qiu Wang, Michael Zenge, Edgar Mueller, Mariappan S. Nadar
  • Patent number: 9684979
    Abstract: A method of magnetic resonance (MR) imaging of a volume undergoing repetitive motion includes obtaining source slice data indicative of a plurality of source slices during the repetitive motion, and obtaining anchor slice data indicative of an anchor slice during the repetitive motion. The anchor slice intersects the plurality of source slices. The source slice data and the anchor slice data are reconstructed. A three-dimensional image assembly procedure is implemented to generate, for each phase of the repetitive motion, volume data based on a respective subset of the reconstructed source slice data. For each phase of the repetitive motion, the respective subset of slices is selected based on a correlation of the source slice data and the anchor slice data along an intersection between each source slice and the anchor slice. The source slice data of the selected subset is corrected for misalignment with the anchor slice data.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: June 20, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Xiaoguang Lu, Peter Speier, Hasan Ertan Cetingul, Marie-Pierre Jolly, Michaela Schmidt, Christoph Guetter, Carmel Hayes, Arne Littmann, Hui Xue, Mariappan S. Nadar, Frank Sauer, Edgar Müller