Patents by Inventor Edgar Mueller

Edgar Mueller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8879852
    Abstract: A reconstructed image is rendered of a patient by a processor from a set of undersampled MRI data by first subtracting two repetitions of the acquired data in k-space to create a third dataset. The processor reconstructs the image by minimizing an objective function under a constraint related to the third dataset, wherein the objective function includes applying a Karhunen-Loeve Transform (KLT) to a temporal dimension of data. The objective function under the constraint is expressed as arg minf{??(f)?1 subject to ?Af?y?2??}. The reconstructed image is an angiogram which may be a 4D angiogram. The angiogram is used to diagnose a vascular disease.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: November 4, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ti-chiun Chang, Mariappan S. Nadar, Jens Gühring, Michael Zenge, Kai Tobias Block, Peter Schmitt, Edgar Mueller
  • Patent number: 8841908
    Abstract: The present embodiments relate to an apparatus that includes a local coil for a magnetic resonance tomography system and an implantable device.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: September 23, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Stefan Assmann, Okan Ekinci, Björn Heismann, Reto Merges, Edgar Müller, Sebastian Schmidt
  • Publication number: 20140233033
    Abstract: Disclosed is a device for the authentication of an optically variable entity exhibiting a color shift with changing viewing-angle, the device comprising a plate of light-refractive material, said plate having two surfaces and an array of light-refracting protrusions or recesses on at least one of said surfaces, and being disposed in said device such as to provide, aside each other, a direct view and a view through said plate onto at least parts of said optically variable entity, said view through said plate being an angularly deflected view, resulting from light refraction at said protrusions or recesses. Further disclosed is a method for authenticating an optically variable entity, as well as the use of a plate having two parallel surfaces and an array of positive or negative light-refracting protrusions or recesses on at least one of said surfaces for authenticating an optically variable entity.
    Type: Application
    Filed: September 26, 2012
    Publication date: August 21, 2014
    Applicant: SICPA HOLDING SA
    Inventors: Edgar Mueller, Pierre Degott, Claude-Alain Despland
  • Patent number: 8807036
    Abstract: An oxidatively curing intaglio printing ink is disclosed, comprising an oxidatively curable polymer, an anionic macromolecular surfactant, a wax component, and a salt of vanadium, preferably of the vanadyl (VO2+) ion, as the oxypolymerization inducing siccativating agent.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: August 19, 2014
    Assignee: Sicpa Holding SA
    Inventors: Olivier Lefebvre, Christophe Schaller, Pierre Degott, Edgar Müller
  • Patent number: 8798942
    Abstract: In a method and a device for phase-sensitive flow measurement of a volume segment of an examination subject in a measurement system, the volume segment is divided into multiple partial volume segments and the following steps are executed repeatedly until the volume segment has been completely measured: movement of a table such that a center of one of the partial volume segments to be measured essentially corresponds to the isocenter of the magnetic resonance system, and implementation of the phase-sensitive flow measurement for the partial volume segment to be measured while the center of the partial volume segment essentially corresponds to the isocenter.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: August 5, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Andreas Greiser, Edgar Mueller, Michael Zenge
  • Patent number: 8794140
    Abstract: Device and process for producing indicia comprising magnetically oriented magnetic or magnetizable particles in ink or coating composition on a sheet of substrate material. Device includes a flat-bed screen-printing unit having a flat printing screen and a printing platen for receiving a sheet. Printing platen has an upper surface facing the printing screen and a first direction along its upper surface along which said sheet is unloadable, and a magnetic orienting unit having multiple magnet assemblies. Magnetic orienting unit is disposed below upper surface of the printing platen, the multiple magnet assemblies are disposed along first direction, and all of the magnet assemblies are concomitantly movable from a first position away from the upper surface of the printing platen to a second position close to the upper surface of the printing platen. The magnetic orienting unit having one or more magnet assemblies is usable as a stand-alone flat-bed magnetization device.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: August 5, 2014
    Assignees: SICPA Holding SA, China Banknote SICPA Security Ink Co., Ltd.
    Inventors: Xiang Li, Claude-Alain Despland, Edgar Mueller, Pierre Degott, Anton Bleikolm, Alexandre Sudan
  • Publication number: 20140212677
    Abstract: A method is described here for the layerwise construction of models, wherein, in a building region, a particulate material is applied layerwise and selectively cured. These steps are repeated until a desired model is obtained. The material comprises in this case a particulate building material and a spray-dried alkali metal silicate solution. Selective activation of the curing proceeds using a water-comprising solution.
    Type: Application
    Filed: June 20, 2012
    Publication date: July 31, 2014
    Inventors: Ingo Gnüchtel, Daniel Günther, Ingo Ederer, Christian Lustig, Edgar Müller
  • Publication number: 20140133724
    Abstract: A computer-implemented method for reconstruction of a magnetic resonance image includes acquiring a first incomplete k-space data set comprising a plurality of first k-space lines spaced according to an acceleration factor and one or more calibration lines. A parallel imaging reconstruction technique is applied to the first incomplete k-space data to determine a plurality of second k-space lines not included in the first incomplete k-space data set, thereby yielding a second incomplete k-space data set. Then, the parallel imaging reconstruction technique is applied to the second incomplete k-space data to determine a plurality of third k-space lines not included in the second incomplete k-space data, thereby yielding a complete k-space data set.
    Type: Application
    Filed: October 15, 2013
    Publication date: May 15, 2014
    Applicants: Siemens Aktiengesellschaft, Siemens Corporation
    Inventors: Jun Liu, Zhili Yang, Mariappan S. Nadar, Nirmal Janardhanan, Michael Zenge, Edgar Mueller, Qiu Wang, Axel Loewe
  • Patent number: 8696031
    Abstract: The present invention discloses a security element comprising a transparent substrate and a magnetically oriented image coating on said substrate, wherein said image coating is preferably laid out such as to show a 3-dimensional effect, appearing in positive or negative relief respectively, if observed form the recto- or the verso side, respectively. The security element can be easily identified by the unaided eye, by just turning around the document and observing the angle-dependent image on either side. On the other hand, the security element cannot be reproduced by scanning or copying the document.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: April 15, 2014
    Assignee: SICPA Holding SA
    Inventors: Claude-Alain Despland, Mathieu Schmid, Pierre Degott, Edgar Müller, Albert Stichelberger
  • Publication number: 20140097845
    Abstract: A computer-implemented method for learning a tight frame includes acquiring undersampled k-space data over a time period using an interleaved process. An average of the undersampled k-space data is determined and a reference image is generated based on the average of the undersampled k-space data. Next, a tight frame operator is determined based on the reference image. Then, a reconstructed image data is generated from the undersampled k-space data via a sparse reconstruction which utilizes the tight frame operator.
    Type: Application
    Filed: September 16, 2013
    Publication date: April 10, 2014
    Applicants: SIEMENS AKTIENGESELLSCHAFT, SIEMENS CORPORATION
    Inventors: Jun Liu, Qiu Wang, Mariappan Nadar, Michael Zenge, Edgar Mueller
  • Publication number: 20140088899
    Abstract: A method for estimating a coil sensitivity map for a magnetic resonance (MR) image includes providing a matrix A of sliding blocks of a 3D image of coil calibration data, calculating a left singular matrix V? from a singular value decomposition of A corresponding to ? leading singular values, calculating P=V?V?H, calculating a matrix S that is an inverse Fourier transform of a zero-padded matrix P, and solving MHcr=(Sr)Hcr for cr, where cr is a vector of coil sensitivity maps for all coils at spatial location r, and M = ( ( 1 1 … 1 0 0 … 0 … … … 0 0 … 0 ) ? ( 0 0 … 0 1 1 … 1 … … … 0 0 … 0 ) ? ? … ? ? ( 0 0 … 0 0 0 … 0 … … … 1 1 … 1 ) ) .
    Type: Application
    Filed: September 27, 2013
    Publication date: March 27, 2014
    Applicants: SIEMENS AKTIENGESELLSCHAFT, SIEMENS CORPORATION
    Inventors: Jun Liu, Hui Xue, Marcel Dominik Nickel, Ti-chiun Chang, Mariappan S. Nadar, Alban Lefebvre, Edgar Mueller, Qiu Wang, Zhili Yang, Nirmal Janardhanan, Michael Zenge
  • Publication number: 20140086469
    Abstract: A method of image reconstruction for a magnetic resonance imaging (MRI) system having a plurality of coils includes obtaining k-space scan data captured by the MRI system, the k-space scan data being representative of an undersampled region over time, determining a respective coil sensitivity profile for the region for each coil of the plurality of coils, and iteratively reconstructing dynamic images for the region from the k-space scan data via an optimization of a minimization problem. The minimization problem is based on the determined coil sensitivity profiles and redundant Haar wavelet transforms of the dynamic images.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 27, 2014
    Applicants: SIEMENS AKTIENGESELLSCHAFT, SIEMENS CORPORATION
    Inventors: Alban Lefebvre, Jun Liu, Edgar Mueller, Mariappan S. Nadar, Michaela Schmidt, Michael Zenge, Qiu Wang
  • Patent number: 8675940
    Abstract: A method of deriving blood flow parameters from a moving three-dimensional (3D) model of a blood vessel includes determining a reference vascular cross-sectional plane through a location of a lumen in a moving 3D model of the blood vessel at one time within the model, determining a plurality of target vascular cross-sectional planes at multiple times via temporal tracking of the reference plane based on a displacement field, determining a plurality of contours based on an intersection of the target vascular cross-sectional planes with the moving 3D vessel model at multiple times within the model, and determining a blood flow parameter of the vessel from intersections of each contour of a given one of the times with a phase contrast magnetic resonance (PC-MRI) image of the blood vessel from the corresponding time.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: March 18, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mehmet Akif Gulsun, Andreas Greiser, Jens Guehring, Arne Littmann, Edgar Müller
  • Patent number: 8675942
    Abstract: A reconstructed image is rendered from a set of MRI data by first estimating an image with an area which does not contain artifacts or has an artifact with a relative small magnitude. Corresponding data elements in the estimated image and a trial image are processed, for instance by multiplication, to generate an intermediate data set. The intermediate data set is transformed and minimized iteratively to generate a reconstructed image that is free or substantially free of artifacts. In one embodiment a Karhunen-Loeve Transform (KLT) is used. A sparsifying transformation may be applied to generate the reconstructed image. The sparsifying transformation may be also not be applied.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: March 18, 2014
    Assignees: Siemens Aktiengesellschaft, National Institutes of Health
    Inventors: Ti-chiun Chang, Mariappan S. Nadar, Jens Gühring, Michael Zenge, Kai Tobias Block, Peter Speier, Edgar Müller, Michael S. Hansen
  • Publication number: 20140062481
    Abstract: In MR imaging of a predetermined volume segment of a living examination subject, the examination subject is stimulated with a defined stimulation pattern, MR data of the predetermined volume segment, are acquired, and MR images based on the MR data are generated that depend on the stimulation pattern. The predetermined volume segment is an internal organ or muscle tissue of the examination subject.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 6, 2014
    Inventors: Andreas Greiser, Jens Guehring, Randall Kroeker, Edgar Mueller, Manuela Rick, Michaela Schmidt, Aurelien Stalder
  • Publication number: 20130342851
    Abstract: A method for gathering information relating to at least one object positioned on a patient positioning device of a medical imaging device is provided. The method includes the following steps: gathering by optical means of 3-D image data relating to the object positioned on the patient positioning device by means of a 3-D image data recording unit, transferring the gathered 3-D image data from the 3-D image data recording unit to an evaluating unit, determining information relating to the object positioned on the patient positioning device based on the 3-D image data by means of the evaluating unit, generating output information based on the determined information relating to the object positioned on the patient positioning device, and outputting the output information relating to the object positioned on the patient positioning device.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 26, 2013
    Inventors: Holger Dresel, Matthias Drobnitzky, Jens Gühring, Edgar Müller, Stefan Popescu
  • Publication number: 20130289912
    Abstract: A method for estimating a coil sensitivity map for a magnetic resonance (MR) image includes providing (61) a matrix A of sliding blocks of a 2D image of coil calibration data, calculating (62) a left singular matrix V? from a singular value decomposition of A corresponding to ? leading singular values, calculating (63) P=V?V?H, calculating (64) a matrix S that is an inverse Fourier transform of a zero-padded matrix P, and solving (65) MHcr=(Sr)Hcr for cr, where cr is a vector of coil sensitivity maps for all coils at spatial location r, and M ? ( ( 1 1 … 1 0 0 … 0 … … … 0 0 … 0 ) ? ( 0 0 … 0 1 1 … 1 … … … 0 0 … 0 ) ? ? … ? ? ( 0 0 … 0 0 0 … 0 … … … 1 1 … 1 ) ) .
    Type: Application
    Filed: February 28, 2013
    Publication date: October 31, 2013
    Applicants: Siemens Aktiengesellschaft, Siemens Corporation
    Inventors: Jun Liu, Hui Xue, Marcel Dominik Nickel, Ti-chiun Chang, Mariappan S. Nadar, Alban Lefebvre, Edgar Mueller, Qiu Wang, Zhili Yang, Nirmal Janardhanan, Michael Zenge
  • Publication number: 20130121554
    Abstract: A method for image reconstruction includes receiving under-sampled k-space data, determining a data fidelity term of a first image of the under-sampled k-space data in view of a second image of the under-sampled k-space data, wherein a time component separated the first image and the second image, determining a spatial penalization on redundant Haar wavelet coefficients of the first image in view of the second image, and optimizing the first image according the data fidelity term and the spatial penalization, wherein the spatial penalization selectively penalizes temporal coefficients and an optimized image of the first image is output.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 16, 2013
    Inventors: Jun Liu, Jeremy Rapin, Alban Lefebvre, Mariappan S. Nadar, Ti-chiun Chang, Michael Zenge, Edgar Müller
  • Publication number: 20130121550
    Abstract: A reconstructed image is rendered of a patient by a processor from a set of undersampled MRI data by first subtracting two repetitions of the acquired data in k-space to create a third dataset. The processor reconstructs the image by minimizing an objective function under a constraint related to the third dataset, wherein the objective function includes applying a Karhunen-Loeve Transform (KLT) to a temporal dimension of data. The objective function under the constraint is expressed as arg minf{??(f)?1 subject to ?Af?y?2??}. The reconstructed image is an angiogram which may be a 4D angiogram. The angiogram is used to diagnose a vascular disease.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 16, 2013
    Applicant: Siemens Corporation
    Inventors: Ti-chiun Chang, Mariappan S. Nadar, Jens Gühring, Michael Zenge, Kai Tobias Block, Peter Schmitt, Edgar Mueller
  • Patent number: 8406496
    Abstract: A method and system for left ventricle (LV) detection in 2D magnetic resonance imaging (MRI) images is disclosed. In order to detect the LV in a 2D MRI image, a plurality of LV candidates are detected, for example using marginal space learning (MSL) based detection. Candidates for distinctive anatomic landmarks associated with the LV are then detected in the 2D MRI image. In particular, apex candidates and base candidates are detected in the 2D MRI image. One of the LV candidates is selected as a final LV detection result using component-based voting based on the detected LV candidates, apex candidates, and base candidates.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: March 26, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Yefeng Zheng, Xiaoguang Lu, Bogdan Georgescu, Edgar Müller, Dorin Comaniciu, Arne Littmann