Patents by Inventor Edgar Roth

Edgar Roth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11289877
    Abstract: An optical system can lock a wavelength of a tunable laser to a specified wavelength of a temperature-insensitive spectral profile of a spectral filter. In some examples, the spectral filter, such as a Fabry-Perot filter, can have a temperature-insensitive peak wavelength and increasing attenuation at wavelengths away from the peak wavelength. The spectral filter can spectrally filter the laser light to form filtered laser light. A detector can detect at least a fraction of the filtered laser light. Circuitry coupled to the detector and the laser can tune the tunable laser to set a signal from the detector to a specified value corresponding to a specified wavelength in the spectral profile, and thereby adjust the selectable wavelength of the tunable laser to match the specified wavelength. In some examples, the optical system can include a polarization rotator, and can use polarization to separate incident light from return light.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: March 29, 2022
    Assignee: Aurrion, Inc.
    Inventors: Brian R. Koch, Jonathan Edgar Roth
  • Patent number: 11231320
    Abstract: Described herein are optical sensing devices for photonic integrated circuits (PICs). A PIC may comprise a plurality of waveguides formed in a silicon on insulator (SOI) substrate, and a plurality of heterogeneous lasers, each laser formed from a silicon material of the SOI substrate and to emit an output wavelength comprising an infrared wavelength. Each of these lasers may comprise a resonant cavity included in one of the plurality of waveguides, and a gain material comprising a non-silicon material and adiabatically coupled to the respective waveguide. A light directing element may direct outputs of the plurality of heterogeneous lasers from the PIC towards an object, and one or more detectors may detect light from the plurality of heterogeneous lasers reflected from or transmitted through the object.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: January 25, 2022
    Assignee: Aurrion, Inc.
    Inventors: Gregory Alan Fish, Jonathan Edgar Roth, Brandon Buckley
  • Publication number: 20210373257
    Abstract: An optical coupling device can couple incident light from a fiber into waveguides, but can reduce the coupling of return light from the waveguides into the fiber. A Faraday rotator layer can rotate by forty-five degrees, with a first handedness, respective planes of polarization of incident beams, and can rotate by forty-five degrees, with a second handedness opposite the first handedness, respective planes of polarization of return beams. A redirection layer can include at least one grating coupler that can redirect an incident beam of one polarization so that the redirected path extends within the redirection layer toward a first waveguide, and can redirect an incident beam of an opposite polarization so that the redirected path extends within the redirection layer toward a second waveguide. An optional birefringent layer can spatially separate incident beam having different polarizations, so that two single-polarization grating couplers can be used.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 2, 2021
    Inventors: Jonathan Edgar Roth, Jared Bauters, Gregory Alan Fish
  • Publication number: 20210311334
    Abstract: Described herein are methods, systems, and apparatuses to utilize an electro-optic modulator including one or more heating elements. The modulator can utilize one or more heating elements to control an absorption or phase shift of the modulated optical signal. At least the active region of the modulator and the one or more heating elements of the modulator are included in a thermal isolation region comprising a low thermal conductivity to thermally isolate the active region and the one or more heating elements from a substrate of the PIC.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 7, 2021
    Inventors: Robert Silvio Guzzon, Erik Norberg, Jonathan Edgar Roth
  • Patent number: 11137555
    Abstract: An optical coupling device can couple incident light from a fiber into waveguides, but can reduce the coupling of return light from the waveguides into the fiber. A Faraday rotator layer can rotate by forty-five degrees, with a first handedness, respective planes of polarization of incident beams, and can rotate by forty-five degrees, with a second handedness opposite the first handedness, respective planes of polarization of return beams. A redirection layer can include at least one grating coupler that can redirect an incident beam of one polarization so that the redirected path extends within the redirection layer toward a first waveguide, and can redirect an incident beam of an opposite polarization so that the redirected path extends within the redirection layer toward a second waveguide. An optional birefringent layer can spatially separate incident beam having different polarizations, so that two single-polarization grating couplers can be used.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: October 5, 2021
    Assignee: Juniper Networks, Inc.
    Inventors: Jonathan Edgar Roth, Jared Bauters, Gregory Alan Fish
  • Publication number: 20210278591
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Application
    Filed: May 11, 2021
    Publication date: September 9, 2021
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Patent number: 11106060
    Abstract: Disclosed are structures as well as methods of manufacture and operation of integrated optoelectronic devices that facilitate directly heating the diode or waveguide structures to regulate a temperature of the device while allowing electrical contacts to be placed close to the device to reduce the electrical resistance. Embodiments include, in particular, heterogeneous electro-absorption modulators that include a compound-semiconductor diode structure placed above a waveguide formed in the device layer of an SOI substrate.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: August 31, 2021
    Assignee: Juniper Networks, Inc.
    Inventors: Jonathan Edgar Roth, Erik Johan Norberg
  • Patent number: 11067839
    Abstract: Described herein are methods, systems, and apparatuses to utilize an electro-optic modulator including one or more heating elements. The modulator can utilize one or more heating elements to control an absorption or phase shift of the modulated optical signal. At least the active region of the modulator and the one or more heating elements of the modulator are included in a thermal isolation region comprising a low thermal conductivity to thermally isolate the active region and the one or more heating elements from a substrate of the PIC.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: July 20, 2021
    Assignee: Aurrion, Inc.
    Inventors: Robert Silvio Guzzon, Erik Norberg, Jonathan Edgar Roth
  • Patent number: 11022751
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: June 1, 2021
    Assignee: Aurrion, Inc.
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Publication number: 20210160596
    Abstract: Described are various configurations of reduced crosstalk optical switches. Various embodiments can reduce or entirely eliminate crosstalk using a coupler that has a power-splitting ratio that compensates for amplitude imbalance caused by phase modulator attenuation. Some embodiments implement a plurality of phase modulators and couplers as part of a dilated switch network to increase overall bandwidth and further reduce potential for crosstalk.
    Type: Application
    Filed: January 28, 2021
    Publication date: May 27, 2021
    Inventor: Jonathan Edgar Roth
  • Patent number: 10951964
    Abstract: Described are various configurations of reduced crosstalk optical switches. Various embodiments can reduce or entirely eliminate crosstalk using a coupler that has a power-splitting ratio that compensates for amplitude imbalance caused by phase modulator attenuation. Some embodiments implement a plurality of phase modulators and couplers as part of a dilated switch network to increase overall bandwidth and further reduce potential for crosstalk.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: March 16, 2021
    Assignee: Juniper Networks, Inc.
    Inventor: Jonathan Edgar Roth
  • Publication number: 20210026067
    Abstract: Described are various configurations of optical structures having asymmetric-width waveguides. A photodetector can include parallel waveguides that have different widths, which can be connected via passive waveguide. One or more light absorbing regions can be proximate to the waveguides to absorb light propagating through one or more of the parallel waveguides. Multiple photodetectors having asymmetric width waveguides can operate to transduce light in different modes in a polarization diversity optical receiver.
    Type: Application
    Filed: September 25, 2020
    Publication date: January 28, 2021
    Inventors: Jonathan Edgar Roth, Jared Bauters, Erik Johan Norberg
  • Publication number: 20210018769
    Abstract: A device, such as an electroabsorption modulator, can modulate a light intensity by controllably absorbing a selectable fraction of the light. The device can include a substrate. A waveguide positioned on the substrate can guide light. An active region positioned on the waveguide can receive guided light from the waveguide, absorb a fraction of the received light, and return a complementary fraction of the received light to the waveguide. Such absorption produces heat, mostly at an input portion of the active region. The input portion of the active region can be thermally coupled to the substrate, which can dissipate heat from the input portion, and can help avoid thermal runaway of the device. The active region can be thermally isolated from the substrate away from the input portion, which can maintain a relatively low thermal mass for the active region, and can increase efficiency when heating the active region.
    Type: Application
    Filed: September 25, 2020
    Publication date: January 21, 2021
    Inventors: Jonathan Edgar Roth, Erik Norberg
  • Publication number: 20200340860
    Abstract: Described herein are optical sensing devices for photonic integrated circuits (PICs). A PIC may comprise a plurality of waveguides formed in a silicon on insulator (SOI) substrate, and a plurality of heterogeneous lasers, each laser formed from a silicon material of the SOI substrate and to emit an output wavelength comprising an infrared wavelength. Each of these lasers may comprise a resonant cavity included in one of the plurality of waveguides, and a gain material comprising a non-silicon material and adiabatically coupled to the respective waveguide. A light directing element may direct outputs of the plurality of heterogeneous lasers from the PIC towards an object, and one or more detectors may detect light from the plurality of heterogeneous lasers reflected from or transmitted through the object.
    Type: Application
    Filed: July 13, 2020
    Publication date: October 29, 2020
    Inventors: Gregory Alan Fish, Jonathan Edgar Roth, Brandon Buckley
  • Publication number: 20200333641
    Abstract: Disclosed are structures as well as methods of manufacture and operation of integrated optoelectronic devices that facilitate directly heating the diode or waveguide structures to regulate a temperature of the device while allowing electrical contacts to be placed close to the device to reduce the electrical resistance. Embodiments include, in particular, heterogeneous electro-absorption modulators that include a compound-semiconductor diode structure placed above a waveguide formed in the device layer of an SOI substrate.
    Type: Application
    Filed: July 2, 2020
    Publication date: October 22, 2020
    Inventors: Jonathan Edgar Roth, Erik Johan Norberg
  • Patent number: 10809548
    Abstract: A device, such as an electroabsorption modulator, can modulate a light intensity by controllably absorbing a selectable fraction of the light. The device can include a substrate. A waveguide positioned on the substrate can guide light. An active region positioned on the waveguide can receive guided light from the waveguide, absorb a fraction of the received light, and return a complementary fraction of the received light to the waveguide. Such absorption produces heat, mostly at an input portion of the active region. The input portion of the active region can be thermally coupled to the substrate, which can dissipate heat from the input portion, and can help avoid thermal runaway of the device. The active region can be thermally isolated from the substrate away from the input portion, which can maintain a relatively low thermal mass for the active region, and can increase efficiency when heating the active region.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: October 20, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Jonathan Edgar Roth, Erik Norberg
  • Patent number: 10802213
    Abstract: Described are various configurations of optical structures having asymmetric-width waveguides. A photodetector can include parallel waveguides that have different widths, which can be connected via passive waveguide. One or more light absorbing regions can be proximate to the waveguides to absorb light propagating through one or more of the parallel waveguides. Multiple photodetectors having asymmetric width waveguides can operate to transduce light in different modes in a polarization diversity optical receiver.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: October 13, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Jonathan Edgar Roth, Jared Bauters, Erik Johan Norberg
  • Publication number: 20200278496
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Patent number: 10739622
    Abstract: Disclosed are structures as well as methods of manufacture and operation of integrated optoelectronic devices that facilitate directly heating the diode or waveguide structures to regulate a temperature of the device while allowing electrical contacts to be placed close to the device to reduce the electrical resistance. Embodiments include, in particular, heterogeneous electro-absorption modulators that include a compound-semiconductor diode structure placed above a waveguide formed in the device layer of an SOI substrate.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: August 11, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Jonathan Edgar Roth, Erik Johan Norberg
  • Patent number: 10732039
    Abstract: Described herein are optical sensing devices for photonic integrated circuits (PICs). A PIC may comprise a plurality of waveguides formed in a silicon on insulator (SOI) substrate, and a plurality of heterogeneous lasers, each laser formed from a silicon material of the SOI substrate and to emit an output wavelength comprising an infrared wavelength. Each of these lasers may comprise a resonant cavity included in one of the plurality of waveguides, and a gain material comprising a non-silicon material and adiabatically coupled to the respective waveguide. A light directing element may direct outputs of the plurality of heterogeneous lasers from the PIC towards an object, and one or more detectors may detect light from the plurality of heterogeneous lasers reflected from or transmitted through the object.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: August 4, 2020
    Assignee: Aurrion, Inc.
    Inventors: Gregory Alan Fish, Jonathan Edgar Roth, Brandon Buckley