Patents by Inventor Edgar Roth

Edgar Roth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190199061
    Abstract: Described are various configurations of integrated wavelength lockers including asymmetric Mach-Zehnder interferometers (AMZIs) and associated detectors. Various embodiments provide improved wavelength-locking accuracy by using an active tuning element in the AMZI to achieve an operational position with high locking sensitivity, a coherent receiver to reduce the frequency-dependence of the locking sensitivity, and/or a temperature sensor and/or strain gauge to computationally correct for the effect of temperature or strain changes.
    Type: Application
    Filed: February 26, 2019
    Publication date: June 27, 2019
    Inventors: John Parker, Jared Bauters, Jonathan Edgar Roth, Erik Norberg, Gregory Alan Fish
  • Publication number: 20190187374
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Application
    Filed: February 13, 2019
    Publication date: June 20, 2019
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Patent number: 10310180
    Abstract: Embodiments of the invention describe apparatuses, systems, and methods of thermal management for photonic integrated circuits (PICs). Embodiments include a first device and a second device comprising including waveguides, wherein the first and second devices have different thermal operating conditions. A first region is adjacent to a waveguide of the first device, wherein its optical mode is to be substantially confined by the first region, and wherein the first region has a first thermal conductivity to dissipate heat based on the thermal operating condition of the first device. A second region is adjacent to a waveguide of the second device, wherein its optical mode is to be substantially confined by the second region, and wherein the second region has a second thermal conductivity to dissipate heat based on the thermal operating condition of the second device. In some embodiments, thermal cross talk is reduced without significantly affecting optical performance.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: June 4, 2019
    Assignee: Aurrion, Inc.
    Inventors: Anand Ramaswamy, Jonathan Edgar Roth, Erik Norberg, Brian Koch
  • Patent number: 10263390
    Abstract: Described are various configurations of integrated wavelength lockers including asymmetric Mach-Zehnder interferometers (AMZIs) and associated detectors. Various embodiments provide improved wavelength-locking accuracy by using an active tuning element in the AMZI to achieve an operational position with high locking sensitivity, a coherent receiver to reduce the frequency-dependence of the locking sensitivity, and/or a temperature sensor and/or strain gauge to computationally correct for the effect of temperature or strain changes.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: April 16, 2019
    Assignee: Juniper Networks, Inc.
    Inventors: John Parker, Jared Bauters, Jonathan Edgar Roth, Erik Norberg, Gregory Alan Fish
  • Patent number: 10256607
    Abstract: Described are various configurations of integrated wavelength lockers including asymmetric Mach-Zehnder interferometers (AMZIs) and associated detectors. Various embodiments provide improved wavelength-locking accuracy by using an active tuning element in the AMZI to achieve an operational position with high locking sensitivity, a coherent receiver to reduce the frequency-dependence of the locking sensitivity, and/or a temperature sensor and/or strain gauge to computationally correct for the effect of temperature or strain changes.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: April 9, 2019
    Assignee: Juniper Networks, Inc.
    Inventors: John Parker, Jared Bauters, Jonathan Edgar Roth, Erik Norberg, Gregory Alan Fish
  • Patent number: 10244297
    Abstract: Described are various configurations of reduced crosstalk optical switches. Various embodiments can reduce or entirely eliminate crosstalk using a coupler that has a power-splitting ratio that compensates for amplitude imbalance caused by phase modulator attenuation. Some embodiments implement a plurality of phase modulators and couplers as part of a dilated switch network to increase overall bandwidth and further reduce potential for crosstalk.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: March 26, 2019
    Assignee: Juniper Networks, Inc.
    Inventor: Jonathan Edgar Roth
  • Patent number: 10241266
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: March 26, 2019
    Assignee: Aurrion, Inc.
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Publication number: 20190072787
    Abstract: Described herein are methods, systems, and apparatuses to utilize an electro-optic modulator including one or more heating elements. The modulator can utilize one or more heating elements to control an absorption or phase shift of the modulated optical signal. At least the active region of the modulator and the one or more heating elements of the modulator are included in a thermal isolation region comprising a low thermal conductivity to thermally isolate the active region and the one or more heating elements from a substrate of the PIC.
    Type: Application
    Filed: November 1, 2018
    Publication date: March 7, 2019
    Inventors: Robert Silvio Guzzon, Erik Norberg, Jonathan Edgar Roth
  • Publication number: 20190064457
    Abstract: An optical coupling device can couple incident light from a fiber into waveguides, but can reduce the coupling of return light from the waveguides into the fiber. A Faraday rotator layer can rotate by forty-five degrees, with a first handedness, respective planes of polarization of incident beams, and can rotate by forty-five degrees, with a second handedness opposite the first handedness, respective planes of polarization of return beams. A redirection layer can include at least one grating coupler that can redirect an incident beam of one polarization so that the redirected path extends within the redirection layer toward a first waveguide, and can redirect an incident beam of an opposite polarization so that the redirected path extends within the redirection layer toward a second waveguide. An optional birefringent layer can spatially separate incident beam having different polarizations, so that two single-polarization grating couplers can be used.
    Type: Application
    Filed: August 24, 2017
    Publication date: February 28, 2019
    Inventors: Jonathan Edgar Roth, Jared Bauters, Gregory Alan Fish
  • Publication number: 20190052053
    Abstract: Described are various configurations of integrated wavelength lockers including asymmetric Mach-Zehnder interferometers (AMZIs) and associated detectors. Various embodiments provide improved wavelength-locking accuracy by using an active tuning element in the AMZI to achieve an operational position with high locking sensitivity, a coherent receiver to reduce the frequency-dependence of the locking sensitivity, and/or a temperature sensor and/or strain gauge to computationally correct for the effect of temperature or strain changes.
    Type: Application
    Filed: October 9, 2018
    Publication date: February 14, 2019
    Inventors: John Parker, Jared Bauters, Jonathan Edgar Roth, Erik Norberg, Gregory Alan Fish
  • Publication number: 20190049298
    Abstract: Described herein are optical sensing devices for photonic integrated circuits (PICs). A PIC may comprise a plurality of waveguides formed in a silicon on insulator (SOI) substrate, and a plurality of heterogeneous lasers, each laser formed from a silicon material of the SOI substrate and to emit an output wavelength comprising an infrared wavelength. Each of these lasers may comprise a resonant cavity included in one of the plurality of waveguides, and a gain material comprising a non-silicon material and adiabatically coupled to the respective waveguide. A light directing element may direct outputs of the plurality of heterogeneous lasers from the PIC towards an object, and one or more detectors may detect light from the plurality of heterogeneous lasers reflected from or transmitted through the object.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: Gregory Alan Fish, Jonathan Edgar Roth, Brandon Buckley
  • Patent number: 10151940
    Abstract: Described herein are methods, systems, and apparatuses to utilize an electro-optic modulator including one or more heating elements. The modulator can utilize one or more heating elements to control an absorption or phase shift of the modulated optical signal. At least the active region of the modulator and the one or more heating elements of the modulator are included in a thermal isolation region comprising a low thermal conductivity to thermally isolate the active region and the one or more heating elements from a substrate of the PIC.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: December 11, 2018
    Assignee: Aurrion, Inc.
    Inventors: Robert Silvio Guzzon, Erik Norberg, Jonathan Edgar Roth
  • Patent number: 10151883
    Abstract: An optical coupling device can include a first birefringent layer having opposing first and second surfaces. The first birefringent layer can split incident light received at the first surface into first and second beams. The first and second beams can have respective polarization orientations that are orthogonal to each other. The first birefringent layer can propagate the first and second beams along respective first and second paths within the first birefringent layer to the second surface. The first and second beams can be spatially separated at the second surface. A redirection layer facing the second surface of the first birefringent layer can include first and second grating couplers configured to respectively redirect the first and second beams to propagate within the redirection layer as respective third and fourth beams. In some examples, the third and fourth beams can have respective polarization orientations that are parallel to each other.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: December 11, 2018
    Assignee: Juniper Networks, Inc.
    Inventors: Jared Bauters, Jonathan Edgar Roth
  • Patent number: 10151939
    Abstract: Embodiments of the invention describe systems, apparatuses and methods for providing athermicity and a tunable spectral response for optical filters. Finite impulse response (FIR) filters are commonly implemented in photonic integrated circuits (PICs) to make devices such as wavelength division multiplexing (WDM) devices, asymmetric Mach-Zehnder interferometers (AMZIs) and array waveguide gratings (AWGs). Athermicity of an FIR filter describes maintaining a consistent frequency transmission spectrum as the ambient temperature changes. A tunable spectral response for an FIR filter describes changing the spectrum of an FIR filter based on its application, as well as potentially correcting for fabrication deviations from the design. In addition, embodiments of the invention reduce energy dissipation requirements and control complexity compared to prior art solutions.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: December 11, 2018
    Assignee: Aurrion, Inc.
    Inventors: Jonathan Edgar Roth, Daniel Knight Sparacin, Gregory Alan Fish
  • Patent number: 10139278
    Abstract: Described herein are optical sensing devices for photonic integrated circuits (PICs). A PIC may comprise a plurality of waveguides formed in a silicon on insulator (SOI) substrate, and a plurality of heterogeneous lasers, each laser formed from a silicon material of the SOI substrate and to emit an output wavelength comprising an infrared wavelength. Each of these lasers may comprise a resonant cavity included in one of the plurality of waveguides, and a gain material comprising a non-silicon material and adiabatically coupled to the respective waveguide. A light directing element may direct outputs of the plurality of heterogeneous lasers from the PIC towards an object, and one or more detectors may detect light from the plurality of heterogeneous lasers reflected from or transmitted through the object.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: November 27, 2018
    Assignee: Aurrion, Inc.
    Inventors: Gregory Alan Fish, Jonathan Edgar Roth, Brandon Buckley
  • Patent number: 10128634
    Abstract: Described are various configurations of integrated wavelength lockers including asymmetric Mach-Zehnder interferometers (AMZIs) and associated detectors. Various embodiments provide improved wavelength-locking accuracy by using an active tuning element in the AMZI to achieve an operational position with high locking sensitivity, a coherent receiver to reduce the frequency-dependence of the locking sensitivity, and/or a temperature sensor and/or strain gauge to computationally correct for the effect of temperature or strain changes.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: November 13, 2018
    Assignee: Juniper Networks, Inc.
    Inventors: John Parker, Jared Bauters, Jonathan Edgar Roth, Erik Norberg, Gregory Alan Fish
  • Publication number: 20180267241
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Application
    Filed: May 24, 2018
    Publication date: September 20, 2018
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Publication number: 20180217413
    Abstract: Embodiments of the invention describe systems, apparatuses and methods for providing athermicity and a tunable spectral response for optical filters. Finite impulse response (FIR) filters are commonly implemented in photonic integrated circuits (PICs) to make devices such as wavelength division multiplexing (WDM) devices, asymmetric Mach-Zehnder interferometers (AMZIs) and array waveguide gratings (AWGs). Athermicity of an FIR filter describes maintaining a consistent frequency transmission spectrum as the ambient temperature changes. A tunable spectral response for an FIR filter describes changing the spectrum of an FIR filter based on its application, as well as potentially correcting for fabrication deviations from the design. In addition, embodiments of the invention reduce energy dissipation requirements and control complexity compared to prior art solutions.
    Type: Application
    Filed: March 15, 2018
    Publication date: August 2, 2018
    Inventors: Jonathan Edgar Roth, Daniel Knight Sparacin, Gregory Alan Fish
  • Patent number: 10007058
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 26, 2018
    Assignee: Aurrion, Inc.
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Publication number: 20180164501
    Abstract: Embodiments describe high-efficiency optical waveguide transitions—i.e., creating heterogeneous transitions between Si and III-V semiconductor regions or devices with minimal reflections. This is advantageous for III-V device performance, e.g. for an on-chip lasers achieving lower relative intensity noise (RIN) and lower phase noise by avoiding reflections, higher gain and reduced gain-ripple from an semiconductor optical amplifier (SOA) by avoiding internal reflections in the SOA. Furthermore, in some embodiments, generated photocurrent can be used as a monitor signal for control purposes, thereby avoiding the use of separate tap-monitor photodetectors, which provide additional link loss.
    Type: Application
    Filed: January 29, 2018
    Publication date: June 14, 2018
    Inventors: Erik Norberg, Jonathan Edgar Roth