Patents by Inventor Edmund ROSSI

Edmund ROSSI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8771987
    Abstract: Disclosed are compositions and methods for increasing the longevity of a cell culture and permitting the increased production of proteins, preferably recombinant proteins, such as antibodies, peptides, enzymes, growth factors, interleukins, interferons, hormones, and vaccines. Cells transfected with an apoptosis-inhibiting gene or vector, such as a triple mutant Bcl-2 gene, can survive longer in culture, resulting in extension of the state and yield of protein biosynthesis. Such transfected cells exhibit maximal cell densities that equal or exceed the maximal density achieved by the parent cell lines. Transfected cells can also be pre-adapted for growth in serum-free medium, greatly decreasing the time required to obtain protein production in serum-free medium. In certain methods, the pre-adapted cells can be used for protein production following transformation under serum-free conditions. The method preferably involves eukaryotic cells, more preferably mammalian cells.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: July 8, 2014
    Assignee: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Zhengxing Qu, Chien-Hsing Chang, Edmund A. Rossi, Jeng-Dar Yang, Diane Rossi
  • Publication number: 20140178294
    Abstract: Disclosed are methods, compositions and uses of high concentration antibody or immunoglobulin formulations for subcutaneous, intramuscular, transdermal or other local (regional) administration, in a volume of than 3, less than 2 or less than 1 ml. Preferably, the formulation contains a high concentration formulation (HCF) buffer comprising phosphate, citrate, polysorbate 80 and mannitol at a pH of about 5.2. The formulation more preferably comprises at least 100, 150, 200, 250 mg/ml or 300 mg/ml of antibody. The methods for preparing the high concentration formulation include ultrafiltration and diafiltration to concentrate the antibody and exchange the medium for HCF buffer. Other embodiments concern use of non-G1m1 (nG1m1) allotype antibodies, such as G1m3 and/or a nG1m1,2 antibodies. The nG1m1 antibodies show decreased immunogenicity compared to G1m1 antibodies.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 26, 2014
    Applicant: IMMUNOMEDICS, INC.
    Inventors: Li Zeng, Rohini Mitra, Edmund A. Rossi, Hans J. Hansen, David M. Goldenberg
  • Publication number: 20140170065
    Abstract: The present invention concerns methods and compositions for treatment of HIV infection in a subject. The compositions may comprise a targeting molecule against an HIV antigen, such as an anti-HIV antibody or antibody fragment. The anti-HIV antibody or fragment may be conjugated to a variety of cytotoxic agents, such as doxorubicin. In a preferred embodiment, the antibody or fragment is P4/D10. Other embodiments may concern methods of imaging, detection or diagnosis of HIV infection in a subject using an anti-HIV antibody or fragment conjugated to a diagnostic agent. In alternative embodiments, a bispecific antibody with at least one binding site for an HIV antigen and at least one binding site for a carrier molecule may be administered, optionally followed by a clearing agent, followed by administration of a carrier molecule conjugated to a therapeutic agent.
    Type: Application
    Filed: February 24, 2014
    Publication date: June 19, 2014
    Applicant: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Chien-Hsing Chang, Edmund A. Rossi, William J. McBride
  • Publication number: 20140161766
    Abstract: The present invention concerns methods and compositions for forming cytokine-antibody complexes using dock-and-lock technology. In preferred embodiments, the cytokine-MAb DNL complex comprises an IgG antibody attached to two AD (anchor domain) moieties and four cytokines, each attached to a DDD (docking and dimerization domain) moiety. The DDD moieties form dimers that bind to the AD moieties, resulting in a 2:1 ratio of DDD to AD. The cytokine-MAb complex exhibits improved pharmacokinetics, with a significantly longer serum half-life than either naked cytokine or PEGylated cytokine. The cytokine-MAb complex also exhibits significantly improved in vitro and in vivo efficacy compared to cytokine alone, antibody alone, unconjugated cytokine plus antibody or cytokine-MAb DNL complexes incorporating an irrelevant antibody. In more preferred embodiment the cytokine is G-CSF, erythropoietin or INF-?2b.
    Type: Application
    Filed: October 30, 2013
    Publication date: June 12, 2014
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 8697080
    Abstract: The present invention concerns methods and compositions for treatment of HIV infection in a subject. The compositions may comprise a targeting molecule against an HIV antigen, such as an anti-HIV antibody or antibody fragment. The anti-HIV antibody or fragment may be conjugated to a variety of cytotoxic agents, such as doxorubicin. In a preferred embodiment, the antibody or fragment is P4/D10. Other embodiments may concern methods of imaging, detection or diagnosis of HIV infection in a subject using an anti-HIV antibody or fragment conjugated to a diagnostic agent. In alternative embodiments, a bispecific antibody with at least one binding site for an HIV antigen and at least one binding site for a carrier molecule may be administered, optionally followed by a clearing agent, followed by administration of a carrier molecule conjugated to a therapeutic agent.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: April 15, 2014
    Assignee: Immunomedics Inc.
    Inventors: David M. Goldenberg, Chien-Hsing Chang, Edmund A. Rossi, William J. McBride
  • Publication number: 20140099254
    Abstract: The present invention concerns combinations of two or more agents for inducing an immune response to cancer or infectious disease. Agents may include leukocyte redirecting complexes, antibody-drug conjugates, interferons (preferably interferon-?), and/or checkpoint inhibitor antibodies. The leukocyte redirecting complexes have at least one binding site for a leukocyte antigen and at least one binding site for an antigen on a diseased cell or pathogen. Preferably, the complex is a DNL™ complex. More preferably, the complex comprises a bispecific antibody (bsAb). Most preferably, the bsAb is an anti-CD3×anti-CD19 bispecific antibody, although antibodies against other leukocyte antigens and/or disease-associated antigens may be used. The complex is capable of targeting effector T cells, NK cells, monocytes or neutrophils to induce leukocyte-mediated cytotoxicity of cells associated with cancer or infectious disease.
    Type: Application
    Filed: December 14, 2013
    Publication date: April 10, 2014
    Applicant: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi, Diane Rossi
  • Patent number: 8658773
    Abstract: Disclosed are methods, compositions and uses of high concentration antibody or immunoglobulin formulations for subcutaneous, intramuscular, transdermal or other local (regional) administration, in a volume of than 3, less than 2 or less than 1 ml. Preferably, the formulation contains a high concentration formulation (HCF) buffer comprising phosphate, citrate, polysorbate 80 and mannitol at a pH of about 5.2. The formulation more preferably comprises at least 100, 150, 200, 250 mg/ml or 300 mg/ml of antibody. The methods for preparing the high concentration formulation include ultrafiltration and diafiltration to concentrate the antibody and exchange the medium for HCF buffer. Other embodiments concern use of non-G1m1 (nG1m1) allotype antibodies, such as G1m3 and/or a nG1m1,2 antibodies. The nG1m1 antibodies show decreased immunogenicity compared to G1m1 antibodies.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: February 25, 2014
    Assignee: Immunomedics, Inc.
    Inventors: Li Zeng, Rohini Mitra, Edmund A. Rossi, Hans J. Hansen, David M. Goldenberg
  • Publication number: 20140050660
    Abstract: The present invention concerns compositions and methods of use of T-cell redirecting complexes, with at least one binding site for a T-cell antigen and at least one binding site for an antigen on a diseased cell or pathogen. Preferably, the complex is a DNL™ complex. More preferably, the complex comprises a bispecific antibody (bsAb). Most preferably, the bsAb is an anti-CD3×anti-CD19 bispecific antibody, although antibodies against other T-cell antigens and/or disease-associated antigens may be used. The complex is capable of targeting effector T cells to induce T-cell-mediated cytotoxicity of cells associated with a disease, such as cancer, autoimmune disease or infectious disease. The cytotoxic immune response is enhanced by co-administration of interferon-based agents that comprise interferon-?, interferon-?, interferon-?1, interferon-?2 or interferon-?3.
    Type: Application
    Filed: August 14, 2013
    Publication date: February 20, 2014
    Applicant: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi, Diane Rossi
  • Publication number: 20140038284
    Abstract: Disclosed are compositions and methods for increasing the longevity of a cell culture and permitting the increased production of proteins, preferably recombinant proteins, such as antibodies, peptides, enzymes, growth factors, interleukins, interferons, hormones, and vaccines. Cells transfected with an apoptosis-inhibiting gene or vector, such as a triple mutant Bcl-2 gene, can survive longer in culture, resulting in extension of the state and yield of protein biosynthesis. Such transfected cells exhibit maximal cell densities that equal or exceed the maximal density achieved by the parent cell lines. Transfected cells can also be pre-adapted for growth in serum-free medium, greatly decreasing the time required to obtain protein production in serum-free medium. In certain methods, the pre-adapted cells can be used for protein production following transformation under serum-free conditions. The method preferably involves eukaryotic cells, more preferably mammalian cells.
    Type: Application
    Filed: September 18, 2013
    Publication date: February 6, 2014
    Applicant: IMMUNOMEDICS, INC.
    Inventors: David M. Goldenberg, Zhengxing Qu, Chien-Hsing Chang, Edmund A. Rossi, Jeng-Dar Yang, Diane Rossi
  • Publication number: 20140038261
    Abstract: The present invention concerns methods and compositions for forming immunotoxin complexes having a high efficacy and low systemic toxicity. In preferred embodiments, the toxin moiety is a ranpirnase (Rap), such as Rap(Q). In more preferred embodiments, the immunotoxin is made using dock-and-lock (DNL) technology. The immunotoxin exhibits improved pharmacokinetics, with a longer serum half-life and significantly greater efficacy compared to toxin alone, antibody alone, unconjugated toxin plus antibody or even other types of toxin-antibody constructs. In a most preferred embodiment the construct comprises an anti-Trop-2 antibody conjugated to Rap, although other combinations of antibodies, antibody fragments and toxins may be used to form the subject immunotoxins. The immunotoxins are of use to treat a variety of diseases, such as cancer, autoimmune disease or immune dysfunction.
    Type: Application
    Filed: September 4, 2013
    Publication date: February 6, 2014
    Applicants: IBC PHARMACEUTICALS, INC., IMMUNOMEDICS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Publication number: 20130323204
    Abstract: The present invention concerns multimeric complexes based on antibody fusion proteins comprising an AD moiety attached to the C-terminal end of each antibody light chain. The complexes further comprise effector moities attached to DDD moieties. Two copies of the DDD moiety form a dimer that binds to the AD moiety. The complexes may be trimers, pentamers, hexamers or other multimers. The effector moieties may be selected from a second antibody or antigen-binding fragment thereof, a cytokine, an interferon, a toxin, an antigen, a xenoantigen, a hapten, a protamine, a hormone, an enzyme, a ligand-binding protein, a pro-apoptotic agent and an anti-angiogenic agent. Surprisingly, attachment of the AD moiety to the C-terminal end of the antibody light chain results in improved pharmacokinetics and in vivo stability and efficacy, compared to homologous complexes wherein the AD moiety is attached to the antibody heavy chain.
    Type: Application
    Filed: May 24, 2013
    Publication date: December 5, 2013
    Applicant: IBC Pharmaceuticals, Inc.
    Inventors: Edmund A. Rossi, Chien-Hsing Chang, David M. Goldenberg
  • Patent number: 8597659
    Abstract: The present invention concerns methods and compositions for forming cytokine-antibody complexes using dock-and-lock technology. In preferred embodiments, the cytokine-MAb DNL complex comprises an IgG antibody attached to two AD (anchor domain) moieties and four cytokines, each attached to a DDD (docking and dimerization domain) moiety. The DDD moieties form dimers that bind to the AD moieties, resulting in a 2:1 ratio of DDD to AD. The cytokine-MAb complex exhibits improved pharmacokinetics, with a significantly longer serum half-life than either naked cytokine or PEGylated cytokine. The cytokine-MAb complex also exhibits significantly improved in vitro and in vivo efficacy compared to cytokine alone, antibody alone, unconjugated cytokine plus antibody or cytokine-MAb DNL complexes incorporating an irrelevant antibody. In more preferred embodiment the cytokine is G-CSF, erythropoietin or INF-?2b.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: December 3, 2013
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Publication number: 20130295005
    Abstract: Disclosed are compositions and methods comprising combinations of anti-CD74 antibodies with a therapeutic agent that is attached to the anti-CD74 antibody or separately administered. Preferably, the therapeutic agent is an antibody that binds to an antigen different from CD74, such as CD19, CD20, CD21, CD22, CD23, CD37, CD40, CD40L, CD52, CD80, IL-6, CXCR4 or HLA-DR. However, the therapeutic agent may be an immunomodulator, a cytokine, a toxin or other known therapeutic agent. Preferably, the anti-CD74 antibody is part of a DNL complex. More preferably, combination therapy with the anti-CD74 antibody and therapeutic agent is more effective than antibody alone, therapeutic agent alone, or the combination of unconjugated anti-CD74 antibody and therapeutic agent. Administration of combination induces apoptosis of target cells in diseases in which CD74 is overexpressed, such as solid tumors, B-cell lymphomas or leukemias, autoimmune disease, immune dysfunction disease or diabetes.
    Type: Application
    Filed: May 29, 2013
    Publication date: November 7, 2013
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 8569054
    Abstract: Disclosed are compositions and methods for increasing the longevity of a cell culture and permitting the increased production of proteins, preferably recombinant proteins, such as antibodies, peptides, enzymes, growth factors, interleukins, interferons, hormones, and vaccines. Cells transfected with an apoptosis-inhibiting gene or vector, such as a triple mutant Bcl-2 gene, can survive longer in culture, resulting in extension of the state and yield of protein biosynthesis. Such transfected cells exhibit maximal cell densities that equal or exceed the maximal density achieved by the parent cell lines. Transfected cells can also be pre-adapted for growth in serum-free medium, greatly decreasing the time required to obtain protein production in serum-free medium. In certain methods, the pre-adapted cells can be used for protein production following transformation under serum-free conditions. The method preferably involves eukaryotic cells, more preferably mammalian cells.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: October 29, 2013
    Assignee: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Zhengxing Qu, Chien-Hsing Chang, Edmund A. Rossi, Jeng-Dar Yang, Diane Nordstrom
  • Patent number: 8551480
    Abstract: The present invention concerns methods and compositions for forming immunotoxin complexes having a high efficacy and low systemic toxicity. In preferred embodiments, the toxin moiety is a ranpirnase (Rap), such as Rap(Q). In more preferred embodiments, the immunotoxin is made using dock-and-lock (DNL) technology. The immunotoxin exhibits improved pharmacokinetics, with a longer serum half-life and significantly greater efficacy compared to toxin alone, antibody alone, unconjugated toxin plus antibody or even other types of toxin-antibody constructs. In a most preferred embodiment the construct comprises an anti-Trop-2 antibody conjugated to Rap, although other combinations of antibodies, antibody fragments and toxins may be used to form the subject immunotoxins. The immunotoxins are of use to treat a variety of diseases, such as cancer, autoimmune disease or immune dysfunction.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: October 8, 2013
    Assignees: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Publication number: 20130177532
    Abstract: The present invention concerns methods and compositions for forming PEGylated complexes of defined stoichiometry and structure. In preferred embodiments, the PEGylated complex is formed using dock-and-lock technology, by attaching a target agent to a DDD sequence and attaching a PEG moiety to an AD sequence and allowing the DDD sequence to bind to the AD sequence in a 2:1 stoichiometry, to form PEGylated complexes with two target agents and one PEG moiety. In alternative embodiments, the target agent may be attached to the AD sequence and the PEG to the DDD sequence to form PEGylated complexes with two PEG moieties and one target agent. In more preferred embodiments, the target agent may comprise any peptide or protein of physiologic or therapeutic activity. The PEGylated complexes exhibit a significantly slower rate of clearance when injected into a subject and are of use for treatment of a wide variety of diseases.
    Type: Application
    Filed: August 20, 2012
    Publication date: July 11, 2013
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 8475794
    Abstract: Disclosed herein are compositions and methods of use comprising combinations of anti-CD74 antibodies with a therapeutic agent. The therapeutic agent may be attached to the anti-CD74 antibody or may be separately administered, either before, simultaneously with or after the anti-CD74 antibody. In preferred embodiments, the therapeutic agent is an antibody or fragment thereof that binds to an antigen different from CD74, such as CD19, CD20, CD21, CD22, CD23, CD37, CD40, CD40L, CD52, CD80, IL-6, CXCR4 and HLA-DR. However, the therapeutic agent may an immunomodulator, a cytokine, a toxin or other therapeutic agent known in the art. More preferably, the anti-CD74 antibody is part of a DNL complex, such as a hexavalent DNL complex. Most preferably, combination therapy with the anti-CD74 antibody or fragment and the therapeutic agent is more effective than the antibody alone, the therapeutic agent alone, or the combination of anti-CD74 antibody and therapeutic agent that are not conjugated to each other.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: July 2, 2013
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Publication number: 20130164816
    Abstract: The present invention concerns methods and compositions for making and using bioactive assemblies of defined compositions, which may have multiple functionalities and/or binding specificities. In particular embodiments, the bioactive assembly is formed using dock-and-lock (DNL) methodology, which takes advantage of the specific binding interaction between dimerization and docking domains (DDD) and anchoring domains (AD) to form the assembly. In various embodiments, one or more effectors may be attached to a DDD or AD sequence. Complementary AD or DDD sequences may be attached to an adaptor module that forms the core of the bioactive assembly, allowing formation of the assembly through the specific DDD/AD binding interactions. Such assemblies may be attached to a wide variety of effector moieties for treatment, detection and/or diagnosis of a disease, pathogen infection or other medical or veterinary condition.
    Type: Application
    Filed: July 16, 2012
    Publication date: June 27, 2013
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 8435540
    Abstract: The present invention concerns methods and compositions for PEGylated complexes of defined stoichiometry and structure. Preferably, the PEGylated complex is formed using dock-and-lock technology, by attaching a therapeutic agent to a DDD sequence and a PEG moiety to an AD sequence, allowing the DDD sequence to bind to the AD sequence in a 2:1 stoichiometry, to form PEGylated complexes with two therapeutic agents and one PEG moiety. Alternatively, the therapeutic agent may be attached to the AD sequence and the PEG to the DDD sequence to form PEGylated complexes with two PEG moieties and one therapeutic agent. In more preferred embodiments, the therapeutic agent may comprise any peptide or protein of physiologic or therapeutic activity, preferably a cytokine, more preferably interferon-?2b. The PEGylated complexes exhibit a significantly slower rate of clearance when injected into a subject and are of use for treatment of a wide variety of diseases.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: May 7, 2013
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Publication number: 20130109073
    Abstract: The present invention concerns methods and compositions for forming cytokine-antibody complexes using dock-and-lock technology. In preferred embodiments, the cytokine-MAb DNL complex comprises an IgG antibody attached to two AD (anchor domain) moieties and four cytokines, each attached to a DDD (docking and dimerization domain) moiety. The DDD moieties form dimers that bind to the AD moieties, resulting in a 2:1 ratio of DDD to AD. The cytokine-MAb complex exhibits improved pharmacokinetics, with a significantly longer serum half-life than either naked cytokine or PEGylated cytokine. The cytokine-MAb complex also exhibits significantly improved in vitro and in vivo efficacy compared to cytokine alone, antibody alone, unconjugated cytokine plus antibody or cytokine-MAb DNL complexes incorporating an irrelevant antibody.
    Type: Application
    Filed: September 5, 2012
    Publication date: May 2, 2013
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi