Patents by Inventor Edmund ROSSI

Edmund ROSSI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100311162
    Abstract: Disclosed are compositions and methods for increasing the longevity of a cell culture and permitting the increased production of proteins, preferably recombinant proteins, such as antibodies, peptides, enzymes, growth factors, interleukins, interferons, hormones, and vaccines. Cells transfected with an apoptosis-inhibiting gene or vector, such as a triple mutant Bcl-2 gene, can survive longer in culture, resulting in extension of the state and yield of protein biosynthesis. Such transfected cells exhibit maximal cell densities that equal or exceed the maximal density achieved by the parent cell lines. Transfected cells can also be pre-adapted for growth in serum-free medium, greatly decreasing the time required to obtain protein production in serum-free medium. In certain methods, the pre-adapted cells can be used for protein production following transformation under serum-free conditions. The method preferably involves eukaryotic cells, more preferably mammalian cells.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 9, 2010
    Applicant: IMMUNOMEDICS, INC.
    Inventors: David M. Goldenberg, Zhengxing Qu, Chien-Hsing Chang, Edmund A. Rossi, Jeng-Dar Yang, Diane Nordstrom
  • Publication number: 20100261885
    Abstract: The present invention concerns methods and compositions for forming PEGylated complexes of defined stoichiometry and structure. In preferred embodiments, the PEGylated complex is formed using dock-and-lock technology, by attaching a target agent to a DDD sequence and attaching a PEG moiety to an AD sequence and allowing the DDD sequence to bind to the AD sequence in a 2:1 stoichiometry, to form PEGylated complexes with two target agents and one PEG moiety. In alternative embodiments, the target agent may be attached to the AD sequence and the PEG to the DDD sequence to form PEGylated complexes with two PEG moieties and one target agent. In more preferred embodiments, the target agent may comprise any peptide or protein of physiologic or therapeutic activity. The PEGylated complexes exhibit a significantly slower rate of clearance when injected into a subject and are of use for treatment of a wide variety of diseases.
    Type: Application
    Filed: December 22, 2009
    Publication date: October 14, 2010
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Publication number: 20100221210
    Abstract: The present invention concerns methods and compositions for forming PEGylated complexes of defined stoichiometry and structure. In preferred embodiments, the PEGylated complex is formed using dock-and-lock technology, by attaching a therapeutic agent to a DDD sequence and attaching a PEG moiety to an AD sequence and allowing the DDD sequence to bind to the AD sequence in a 2:1 stoichiometry, to form PEGylated complexes with two therapeutic agents and one PEG moiety. In alternative embodiments, the therapeutic agent may be attached to the AD sequence and the PEG to the DDD sequence to form PEGylated complexes with two PEG moieties and one therapeutic agent. In more preferred embodiments, the therapeutic agent may comprise any peptide or protein of physiologic or therapeutic activity, preferably a cytokine, more preferably interferon-?2b. The PEGylated complexes exhibit a significantly slower rate of clearance when injected into a subject and are of use for treatment of a wide variety of diseases.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 2, 2010
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 7785880
    Abstract: Disclosed are compositions and methods for increasing the longevity of a cell culture and permitting the increased production of proteins, preferably recombinant proteins, such as antibodies, peptides, enzymes, growth factors, interleukins, interferons, hormones, and vaccines. Cells transfected with an apoptosis-inhibiting gene or vector, such as a triple mutant Bcl-2 gene, can survive longer in culture, resulting in extension of the state and yield of protein biosynthesis. Such transfected cells exhibit maximal cell densities that equal or exceed the maximal density achieved by the parent cell lines. Transfected cells can also be pre-adapted for growth in serum-free medium, greatly decreasing the time required to obtain protein production in serum-free medium. In certain methods, the pre-adapted cells can be used for protein production following transformation under serum-free conditions. The method preferably involves eukaryotic cells, more preferably mammalian cells.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: August 31, 2010
    Assignee: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Zhengxing Qu, Chien-Hsing Chang, Edmund A. Rossi, Jeng-Dar Yang, Diane Nordstrom
  • Publication number: 20100189689
    Abstract: The present invention concerns methods and compositions for forming cytokine-antibody complexes using dock-and-lock technology. In preferred embodiments, the cytokine-MAb DNL complex comprises an IgG antibody attached to two AD (anchor domain) moieties and four cytokines, each attached to a DDD (docking and dimerization domain) moiety. The DDD moieties form dimers that bind to the AD moieties, resulting in a 2:1 ratio of DDD to AD. The cytokine-MAb complex exhibits improved pharmacokinetics, with a significantly longer serum half-life than either naked cytokine or PEGylated cytokine. The cytokine-MAb complex also exhibits significantly improved in vitro and in vivo efficacy compared to cytokine alone, antibody alone, unconjugated cytokine plus antibody or cytokine-MAb DNL complexes incorporating an irrelevant antibody. In more preferred embodiment the cytokine is G-CSF, erythropoietin or INF-?2b.
    Type: Application
    Filed: April 1, 2010
    Publication date: July 29, 2010
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 7666400
    Abstract: The present invention concerns methods and compositions for forming PEGylated complexes of defined stoichiometry and structure. In preferred embodiments, the PEGylated complex is formed using dock-and-lock technology, by attaching a therapeutic agent to a DDD sequence and attaching a PEG moiety to an AD sequence and allowing the DDD sequence to bind to the AD sequence in a 2:1 stoichiometry, to form PEGylated complexes with two target agents and one PEG moiety. In alternative embodiments, the target agent may be attached to the AD sequence and the PEG to the DDD sequence to form PEGylated complexes with two PEG moieties and one target agent. In more preferred embodiments, the target agent may comprise any peptide or protein of physiologic or therapeutic activity. The PEGylated complexes exhibit a significantly slower rate of clearance when injected into a subject and are of use for treatment of a wide variety of diseases.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: February 23, 2010
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Publication number: 20090269277
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Preferred embodiments concern hexameric stably tethered structures comprising one or more IgG antibody fragments and which may be monospecific or bispecific. The disclosed methods and compositions provide a facile and general way to obtain stably tethered structures of virtually any functionality and/or binding specificity. The stably tethered structures may be administered to subjects for diagnostic and/or therapeutic use, for example for treatment of cancer or autoimmune disease. The stably tethered structures may bind to and/or be conjugated to a variety of known effectors, such as drugs, enzymes, radionuclides, therapeutic agents and/or diagnostic agents.
    Type: Application
    Filed: March 3, 2009
    Publication date: October 29, 2009
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Publication number: 20090253179
    Abstract: Disclosed are compositions and methods for increasing the longevity of a cell culture and permitting the increased production of proteins, preferably recombinant proteins, such as antibodies, peptides, enzymes, growth factors, interleukins, interferons, hormones, and vaccines. Cells transfected with an apoptosis-inhibiting gene or vector, such as a triple mutant Bcl-2 gene, can survive longer in culture, resulting in extension of the state and yield of protein biosynthesis. Such transfected cells exhibit maximal cell densities that equal or exceed the maximal density achieved by the parent cell lines. Transfected cells can also be pre-adapted for growth in serum-free medium, greatly decreasing the time required to obtain protein production in serum-free medium. In certain methods, the pre-adapted cells can be used for protein production following transformation under serum-free conditions. The method preferably involves eukaryotic cells, more preferably mammalian cells.
    Type: Application
    Filed: March 17, 2009
    Publication date: October 8, 2009
    Applicant: IMMUNOMEDICS, INC.
    Inventors: David M. Goldenberg, Zhengxing Qu, Chien-Hsing Chang, Edmund A. Rossi, Jeng-Dar Yang, Diane Nordstrom
  • Publication number: 20090246214
    Abstract: Recombinant immunotoxins containing a cytotoxic RNAse fused to an antibody or antibody fragment may be produced in mammalian cell culture. Surprisingly, immunotoxins containing a cytotoxic RNAse fused to the N-terminus of one antibody variable domain can be prepared and retain the ability to specifically bind antigen. The immunotoxins may be used in a variety of therapeutic methods for treating diseases or syndromes associated with unwanted or inappropriate cell proliferation or activation.
    Type: Application
    Filed: June 5, 2009
    Publication date: October 1, 2009
    Applicant: IMMUNOMEDICS, INC.
    Inventors: David M. GOLDENBERG, Hans J. HANSEN, Chien-Hsing CHANG, Sailaja VANAMA, Edmund A. ROSSI
  • Publication number: 20090240037
    Abstract: Humanized, chimeric and human anti-CD20 antibodies and CD20 antibody fusion proteins that bind to a human B cell marker, referred to as CD20, which are useful for the treatment and diagnosis of B-cell disorders, such as B-cell malignancies and autoimmune diseases, and methods of treatment and diagnosis are disclosed. Methods of making the humanized, chimeric and human anti-CD20 antibodies are disclosed. A humanized anti-HSG (histamine-succinyl-glycyl) monoclonal antibody designated h679 which binds with high affinity to molecules containing the moiety histamine-succinyl-glycyl (HSG), and methods of making the humanized anti-HSG antibody also are disclosed.
    Type: Application
    Filed: October 13, 2008
    Publication date: September 24, 2009
    Applicant: Immunomedics, Inc.
    Inventors: Edmund ROSSI, Chien-Hsing Ken CHANG, David M. GOLDENBERG, Hans HANSEN
  • Publication number: 20090202487
    Abstract: The present invention concerns methods and compositions for forming cytokine-antibody complexes using dock-and-lock technology. In preferred embodiments, the cytokine-MAb DNL complex comprises an IgG antibody attached to two AD (anchor domain) moieties and four cytokines, each attached to a DDD (docking and dimerization domain) moiety. The DDD moieties form dimers that bind to the AD moieties, resulting in a 2:1 ratio of DDD to AD. The cytokine-MAb complex exhibits improved pharmacokinetics, with a significantly longer serum half-life than either naked cytokine or PEGylated cytokine. The cytokine-MAb complex also exhibits significantly improved in vitro and in vivo efficacy compared to cytokine alone, antibody alone, unconjugated cytokine plus antibody or cytokine-MAb DNL complexes incorporating an irrelevant antibody.
    Type: Application
    Filed: April 6, 2009
    Publication date: August 13, 2009
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Publication number: 20090202433
    Abstract: The present invention concerns methods and compositions for making and using bioactive assemblies of defined compositions, which may have multiple functionalities and/or binding specificities. In particular embodiments, the bioactive assembly is formed using dock-and-lock (DNL) methodology, which takes advantage of the specific binding interaction between dimerization and docking domains (DDD) and anchoring domains (AD) to form the assembly. In various embodiments, one or more effectors may be attached to a DDD or AD sequence. Complementary AD or DDD sequences may be attached to an adaptor module that forms the core of the bioactive assembly, allowing formation of the assembly through the specific DDD/AD binding interactions. Such assemblies may be attached to a wide variety of effector moieties for treatment, detection and/or diagnosis of a disease, pathogen infection or other medical or veterinary condition.
    Type: Application
    Filed: April 3, 2009
    Publication date: August 13, 2009
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Publication number: 20090191225
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions with multiple functionalities and/or binding specificities. Particular embodiments concern stably tethered structures comprising a homodimer of a first monomer, comprising a dimerization and docking domain attached to a first precursor, and a second monomer comprising an anchoring domain attached to a second precursor. The first and second precursors may be virtually any molecule or structure, such as antibodies, antibody fragments, antibody analogs or mimetics, aptamers, binding peptides, fragments of binding proteins, known ligands for proteins or other molecules, enzymes, detectable labels or tags, therapeutic agents, toxins, pharmaceuticals, cytokines, interleukins, interferons, radioisotopes, proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, organic or inorganic compounds, etc.
    Type: Application
    Filed: March 3, 2009
    Publication date: July 30, 2009
    Applicant: IBC PHARMACEUTICALS, INC.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 7550143
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Particular embodiments concern homodimers comprising monomers that contain a dimerization and docking domain attached to a precursor. The precursors may be virtually any molecule or structure, such as antibodies, antibody fragments, antibody analogs or mimetics, aptamers, binding peptides, fragments of binding proteins, known ligands for proteins or other molecules, enzymes, detectable labels or tags, therapeutic agents, toxins, pharmaceuticals, cytokines, interleukins, interferons, radioisotopes, proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, organic or inorganic compounds, etc. Other embodiments concern tetramers comprising a first and second homodimer, which may be identical or different.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: June 23, 2009
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 7544487
    Abstract: Recombinant immunotoxins containing a cytotoxic RNAse fused to an antibody or antibody fragment may be produced in mammalian cell culture. Surprisingly, immunotoxins containing a cytotoxic RNAse fused to the N-terminus of one antibody variable domain can be prepared and retain the ability to specifically bind antigen. The immunotoxins may be used in a variety of therapeutic methods for treating diseases or syndromes associated with unwanted or inappropriate cell proliferation or activation.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: June 9, 2009
    Assignee: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Hans J. Hansen, Chien-Hsing Ken Chang, Sailaja S. Vanama, Edmund A. Rossi
  • Patent number: 7537930
    Abstract: Disclosed are compositions and methods for increasing the longevity of a cell culture and permitting the increased production of proteins, preferably recombinant proteins, such as antibodies, peptides, enzymes, growth factors, interleukins, interferons, hormones, and vaccines. Cells transfected with an apoptosis-inhibiting gene or vector, such as a triple mutant Bcl-2 gene, can survive longer in culture, resulting in extension of the state and yield of protein biosynthesis. Such transfected cells exhibit maximal cell densities that equal or exceed the maximal density achieved by the parent cell lines. Transfected cells can also be pre-adapted for growth in serum-free medium, greatly decreasing the time required to obtain protein production in serum-free medium. In certain methods, the pre-adapted cells can be used for protein production following transformation under serum-free conditions. The method preferably involves eukaryotic cells, more preferably mammalian cells.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: May 26, 2009
    Assignee: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Zhengxing Qu, Chien Hsing Chang, Edmund A. Rossi, Jeng-Dar Yang, Diane Nordstrom
  • Patent number: 7534866
    Abstract: The present invention concerns methods and compositions for making and using bioactive assemblies of defined compositions, which may have multiple functionalities and/or binding specificities. In particular embodiments, the bioactive assembly is formed using dock-and-lock (DNL) methodology, which takes advantage of the specific binding interaction between dimerization and docking domains (DDD) and anchoring domains (AD) to form the assembly. In various embodiments, one or more effectors may be attached to a DDD or AD sequence. Complementary AD or DDD sequences may be attached to an adaptor module that forms the core of the bioactive assembly, allowing formation of the assembly through the specific DDD/AD binding interactions. Such assemblies may be attached to a wide variety of effector moieties for treatment, detection and/or diagnosis of a disease, pathogen infection or other medical or veterinary condition.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: May 19, 2009
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi
  • Patent number: 7531327
    Abstract: Disclosed herein are compositions and methods for increasing the longevity of a cell culture and permitting the increased production of proteins, preferably recombinant proteins, such as antibodies, peptides, enzymes, growth factors, interleukins, interferons, hormones, and vaccines. By transfecting cells in culture with an apoptosis-inhibiting gene or vector, cells in culture can survive longer, resulting in extension of the state and yield of protein biosynthesis. Expression of the apoptosis-inhibitor within the cells, because it does not kill the cells, allows the cells, or an increased fraction thereof, to be maintained in culture for longer periods. This invention then allows for controlled, enhanced protein production of cell lines for commercial and research uses, particularly the enhanced production of growth factors, interferons, interleukins, hormones, enzymes, and monoclonal antibodies, and the like.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: May 12, 2009
    Assignee: Immunomedics, Inc.
    Inventors: David M. Goldenberg, Zhengxing Qu, Eva Horak, Ivan D. Horak, Chien Hsing Chang, Edmund A. Rossi, Jeng-Dar Yang
  • Patent number: 7527787
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions, which may have multiple functionalities and/or binding specificities. Preferred embodiments concern hexameric stably tethered structures comprising one or more IgG antibody fragments and which may be monospecific or bispecific. The disclosed methods and compositions provide a facile and general way to obtain stably tethered structures of virtually any functionality and/or binding specificity. The stably tethered structures may be administered to subjects for diagnostic and/or therapeutic use, for example for treatment of cancer or autoimmune disease. The stably tethered structures may bind to and/or be conjugated to a variety of known effectors, such as drugs, enzymes, radionuclides, therapeutic agents and/or diagnostic agents.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: May 5, 2009
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien-Hsing Chang, David M. Goldenberg, Edmund A. Rossi
  • Patent number: 7521056
    Abstract: The present invention concerns methods and compositions for stably tethered structures of defined compositions with multiple functionalities and/or binding specificities. Particular embodiments concern stably tethered structures comprising a homodimer of a first monomer, comprising a dimerization and docking domain attached to a first precursor, and a second monomer comprising an anchoring domain attached to a second precursor. The first and second precursors may be virtually any molecule or structure, such as antibodies, antibody fragments, antibody analogs or mimetics, aptamers, binding peptides, fragments of binding proteins, known ligands for proteins or other molecules, enzymes, detectable labels or tags, therapeutic agents, toxins, pharmaceuticals, cytokines, interleukins, interferons, radioisotopes, proteins, peptides, peptide mimetics, polynucleotides, RNAi, oligosaccharides, natural or synthetic polymeric substances, nanoparticles, quantum dots, organic or inorganic compounds, etc.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: April 21, 2009
    Assignee: IBC Pharmaceuticals, Inc.
    Inventors: Chien Hsing Chang, David M. Goldenberg, William J. McBride, Edmund A. Rossi