Patents by Inventor Edvard Kalvesten

Edvard Kalvesten has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9936918
    Abstract: A method of providing a metal coating on a substrate (10), and electrically insulating sections/parts of the metal coated substrate from each other. A substrate is provided with an insulating material in the substrate, the insulating first material extending through the thickness of the substrate and protruding above one surface of the substrate. It forms an enclosed section/portion (14) of the substrate. A protective structure (15) is provided on the insulating material such that it covers the entire circumference thereof. The insulating material is selectively etched to create an under-etch (18) under the protective structure. Finally conductive material (19) is deposited to provide a metal coating over the substrate, whereby the under-etch will provide a disruption in the deposited metal coating, thereby electrically insulating the enclosed section from the surrounding substrate.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: April 10, 2018
    Assignee: SILEX MICROSYSTEMS AB
    Inventors: Edvard Kalvesten, Thorbjorn Ebefors, Anders Eriksson
  • Patent number: 9718674
    Abstract: A device includes a base substrate (700) with a micro component (702) attached thereto. Suitably it is provided with routing elements (704) for conducting signals to and from the component (702). It also includes spacer members (706) which also can act as conducting structures for routing signals vertically. There is a capping structure (708) of a glass material, provided above the base substrate (700), bonded via the spacer members (706), preferably by eutectic bonding, wherein the capping structure (708) includes vias (710) including metal for providing electrical connection through the capping structure. The vias can be made by a stamping/pressing method entailing pressing needles under heating to soften the glass and applying pressure, to a predetermined depth in the glass. However, other methods are possible, e-g- drilling, etching, blasting.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: August 1, 2017
    Assignee: SILEX MICROSYSTEMS AB
    Inventors: Edvard Kalvesten, Thorbjorn Ebefors, Niklas Svedin
  • Patent number: 9620390
    Abstract: A wafer level method of making a micro-electronic and/or micro-mechanic device, having a capping with electrical wafer through connections (vias), comprising the steps of providing a first wafer of a semiconductor material having a first and a second side and a plurality of holes and/or recesses in the first side, and a barrier structure extending over the wafer on the second side, said barrier comprising an inner layer an insulating material, such as oxide, and an outer layer of another material. Then, metal is applied in said holes so as to cover the walls in the holes and the bottom of the holes. The barrier structure is removed and contacts are provided to the wafer through connections on the back-side of the wafer. Bonding structures are provided on either of said first side or the second side of the wafer. The wafer is bonded to another wafer carrying electronic and micro-electronic/mechanic components, such that the first wafer forms a capping structure covering the second wafer.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: April 11, 2017
    Assignee: Silex Microsystems AB
    Inventors: Thorbjorn Ebefors, Edvard Kalvesten, Tomas Bauer
  • Patent number: 9607915
    Abstract: Method of making through-substrate-vias in glass substrates includes providing a first substrate on which a plurality of needles protruding vertically from the substrate are made; providing a second substrate made of glass; locating the substrates adjacent each other such that the needles on the first substrate face the second substrate; applying heat to a temperature where the glass softens, by heating the glass or the needle substrate or both; applying a force such that the needles on the first substrate penetrate into the glass to provide impressions in the glass; and finally, removing the first substrate and providing material filling the impressions in the second substrate made of glass. A device includes a silicon substrate having a cavity in which a MEMS component is accommodated, and a cap wafer made of a material having a low dielectric constant, and through substrate vias of metal, is bonded to the silicon substrate.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: March 28, 2017
    Assignee: SILEX MICROSYSTEMS AB
    Inventors: Ulf Erlesand, Edvard Kälvesten
  • Patent number: 9448401
    Abstract: A layered micro-electronic and/or micro-mechanic structure comprises at least three alternating electrically conductive layers with insulating layers between the conductive layers. There is also provided a via in a first outer layer, said via comprising an insulated conductive connection made of wafer native material through the layer, an electrically conductive plug extending through the other layers and into said via in the first outer layer in order to provide conductivity through the layers, and an insulating enclosure surrounding said conductive plug in at least one selected layer of said other layers for insulating said plug from the material in said selected layer. It also relates to micro-electronic and/or micro-mechanic device comprising a movable member provided above a cavity such that it is movable in at least one direction. The device has a layered structure according to the invention. Methods of making such a layered MEMS structure is also provided.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: September 20, 2016
    Assignee: Silex Microsystems AB
    Inventors: Thorbjorn Ebefors, Edvard Kalvesten, Peter Agren, Niklas Svedin
  • Publication number: 20160207758
    Abstract: A device includes a base substrate (700) with a micro component (702) attached thereto. Suitably it is provided with routing elements (704) for conducting signals to and from the component (702). It also includes spacer members (706) which also can act as conducting structures for routing signals vertically. There is a capping structure (708) of a glass material, provided above the base substrate (700), bonded via the spacer members (706), preferably by eutectic bonding, wherein the capping structure (708) includes vias (710) including metal for providing electrical connection through the capping structure. The vias can be made by a stamping/pressing method entailing pressing needles under heating to soften the glass and applying pressure, to a predetermined depth in the glass. However, other methods are possible, e-g- drilling, etching, blasting.
    Type: Application
    Filed: August 26, 2014
    Publication date: July 21, 2016
    Inventors: Edvard KALVESTEN, Thorbjorn EBEFORS, Niklas SVEDIN
  • Patent number: 9362139
    Abstract: A wafer level method of making a micro-electronic and/or micro-mechanic device, having a capping with electrical wafer through connections (vias), comprising the steps of providing a first wafer of a semiconductor material having a first and a second side and a plurality of holes and/or recesses in the first side, and a barrier structure extending over the wafer on the second side, said barrier comprising an inner layer an insulating material, such as oxide, and an outer layer of another material. Then, metal is applied in said holes so as to cover the walls in the holes and the bottom of the holes. The barrier structure is removed and contacts are provided to the wafer through connections on the back-side of the wafer. Bonding structures are provided on either of said first side or the second side of the wafer. The wafer is bonded to another wafer carrying electronic and micro-electronic/mechanic components, such that the first wafer forms a capping structure covering the second wafer.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: June 7, 2016
    Assignee: Silex Microsystems AB
    Inventors: Thorbjörn Ebefors, Edvard Kälvesten, Tomas Bauer
  • Publication number: 20160122180
    Abstract: A wafer level method of making a micro-electronic and/or micro-mechanic device, having a capping with electrical wafer through connections (vias), comprising the steps of providing a first wafer of a semiconductor material having a first and a second side and a plurality of holes and/or recesses in the first side, and a barrier structure extending over the wafer on the second side, said barrier comprising an inner layer an insulating material, such as oxide, and an outer layer of another material. Then, metal is applied in said holes so as to cover the walls in the holes and the bottom of the holes. The barrier structure is removed and contacts are provided to the wafer through connections on the back-side of the wafer. Bonding structures are provided on either of said first side or the second side of the wafer. The wafer is bonded to another wafer carrying electronic and micro-electronic/mechanic components, such that the first wafer forms a capping structure covering the second wafer.
    Type: Application
    Filed: January 12, 2016
    Publication date: May 5, 2016
    Inventors: Thorbjom Ebefors, Edvard Kalvesten, Tomas Bauer
  • Patent number: 9312217
    Abstract: The invention relates to a method of making a starting substrate wafer for semiconductor engineering having electrical wafer through connections (140; 192). It comprises providing a wafer (110; 150) having a front side and a back side and having a base of low resistivity silicon and a layer of high resistivity material on the front side. On the wafer there are islands of low resistivity material in the layer of high resistivity material. The islands are in contact with the silicon base material. Trenches are etched from the back side of the wafer but not all the way through the wafer to provide insulating enclosures defining the wafer through connections (140; 192). The trenches are filled with insulating material. Then the front side of the wafer is grinded to expose the insulating material to create the wafer through connections.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: April 12, 2016
    Assignee: Silex Microsystems AB
    Inventors: Edvard Kälvesten, Tomas Bauer, Thorbjörn Ebefors
  • Publication number: 20150279756
    Abstract: Method of making through-substrate-vias in glass substrates includes providing a first substrate on which a plurality of needles protruding vertically from the substrate are made; providing a second substrate made of glass; locating the substrates adjacent each other such that the needles on the first substrate face the second substrate; applying heat to a temperature where the glass softens, by heating the glass or the needle substrate or both; applying a force such that the needles on the first substrate penetrate into the glass to provide impressions in the glass; and finally, removing the first substrate and providing material filling the impressions in the second substrate made of glass. A device includes a silicon substrate having a cavity in which a MEMS component is accommodated, and a cap wafer made of a material having a low dielectric constant, and through substrate vias of metal, is bonded to the silicon substrate.
    Type: Application
    Filed: October 31, 2013
    Publication date: October 1, 2015
    Inventors: Ulf Erlesand, Edvard Kälvesten
  • Publication number: 20140378804
    Abstract: A method of providing a metal coating on a substrate (10), and electrically insulating sections/parts of the metal coated substrate from each other. A substrate is provided with an insulating material in the substrate, the insulating first material extending through the thickness of the substrate and protruding above one surface of the substrate. It forms an enclosed section/portion (14) of the substrate. A protective structure (15) is provided on the insulating material such that it covers the entire circumference thereof. The insulating material is selectively etched to create an under-etch (18) under the protective structure. Finally conductive material (19) is deposited to provide a metal coating over the substrate, whereby the under-etch will provide a disruption in the deposited metal coating, thereby electrically insulating the enclosed section from the surrounding substrate.
    Type: Application
    Filed: November 29, 2012
    Publication date: December 25, 2014
    Applicant: SILEX MICROSYSTEMS AB
    Inventors: Edvard Kalvesten, Thorbjorn Ebefors, Anders Eriksson
  • Patent number: 8729713
    Abstract: A vent hole precursor structure (26) in an intermediate product for a semi-conductor device has delicate structures (27, 28), and said intermediate product has a cavity (21) with a pressure therein differing from the pressure of the surroundings. The intermediate product comprises a first wafer (20) in which there is formed a depression (21). The first wafer is bonded to a second wafer (22) comprising a device layer (23) from which the structures (27, 28) are to be made by etching. A hole or groove (26) having a predefined depth extends downwards into the device layer, such that the cavity (21) during etching is opened up before the etching procedure breaks through the device layer (23) to form the structures (27, 28).
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: May 20, 2014
    Assignee: Silex Microsystems AB
    Inventors: Thorbjörn Ebefors, Edvard Kälvesten, Peter Agren, Niklas Svedin
  • Publication number: 20140063580
    Abstract: A layered micro-electronic and/or micro-mechanic structure comprises at least three alternating electrically conductive layers with insulating layers between the conductive layers. There is also provided a via in a first outer layer, said via comprising an insulated conductive connection made of wafer native material through the layer, an electrically conductive plug extending through the other layers and into said via in the first outer layer in order to provide conductivity through the layers, and an insulating enclosure surrounding said conductive plug in at least one selected layer of said other layers for insulating said plug from the material in said selected layer. It also relates to micro-electronic and/or micro- mechanic device comprising a movable member provided above a cavity such that it is movable in at least one direction. The device has a layered structure according to the invention. Methods of making such a layered MEMS structure is also provided.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: SILEX Microsystems AB
    Inventors: Thorbjorn Ebefors, Edvard Kalvesten, Peter Agren, Niklas Svedin
  • Patent number: 8637351
    Abstract: The invention relates in a general aspect to a method of making vertically protruding elements on a substrate, said elements having a tip comprising at least one inclined surface and an elongated body portion extending between said substrate and said tip. The method comprises an anisotropic, crystal plane dependent etch forming said inclined surface(s); and an anisotropic, non crystal plane dependent etch forming said elongated body portion; combined with suitable patterning processes defining said protruding elements to have a predetermined base geometry.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: January 28, 2014
    Assignee: Silex Microsystem AB
    Inventors: Edvard Kälvesten, Thorbjörn Ebefors, Thierry Corman
  • Patent number: 8630033
    Abstract: A layered micro-electronic and/or micro-mechanic structure comprises at least three alternating electrically conductive layers with insulating layers between the conductive layers. There is also provided a via in a first outer layer, said via comprising an insulated conductive connection made of wafer native material through the layer, an electrically conductive plug extending through the other layers and into said via in the first outer layer in order to provide conductivity through the layers, and an insulating enclosure surrounding said conductive plug in at least one selected layer of said other layers for insulating said plug from the material in said selected layer. It also relates to micro-electronic and/or micro-mechanic device comprising a movable member provided above a cavity such that it is movable in at least one direction. The device has a layered structure according to the invention. Methods of making such a layered MEMS structure is also provided.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: January 14, 2014
    Assignee: Silex Microsystems AB
    Inventors: Thorbjörn Ebefors, Edvard Kälvesten, Peter Agren, Niklas Svedin, Thomas Ericson
  • Patent number: 8592981
    Abstract: The invention relates to a layered micro-electronic and/or micro-mechanic structure, comprising at least three alternating electrically conductive layers with insulating layers between the conductive layers. There is also provided a via in a first outer layer, said via comprising an insulated conductive connection made of wafer native material through the layer, an electrically conductive plug extending through the other layers and into said via in the first outer layer in order to provide conductivity through the layers, and an insulating enclosure surrounding said conductive plug in at least one selected layer of said other layers for insulating said plug from the material in said selected layer. It also relates to micro-electronic and/or micro-mechanic device comprising a movable member provided above a cavity such that it is movable in at least one direction. The device has a layered structure according to the invention. Methods of making such a layered MEMS structure is also provided.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: November 26, 2013
    Assignee: Silex Microsystems AB
    Inventors: Thorbjörn Ebefors, Edvard Kälvesten, Peter Ågren, Niklas Svedin
  • Publication number: 20120288422
    Abstract: A method of making a microfluidic device, includes: providing an optically transparent bottom substrate and an optically transparent top substrate, each made of glass. Recesses are made in the top substrate and the top and bottom substrates are bonded together. Then, material is removed from the top substrate to expose the recesses, and a lid is attached to the top substrate so as to cover the recesses whereby channels are formed. At least that surface of the lid facing towards the recesses in the top substrate has a surface roughness of <5 nm, preferably <2 nm. A microfluidic device, including a body of an optically transparent material, and at least one channel extending inside the body, the channels having a bottom surface, a top surface and side walls is also described. The top and bottom surfaces both exhibit surface a roughness <5 nm, preferably <2 nm.
    Type: Application
    Filed: May 11, 2012
    Publication date: November 15, 2012
    Applicant: SILEX MICROSYSTEMS AB
    Inventor: Edvard KALVESTEN
  • Patent number: 8308960
    Abstract: The invention relates in a general aspect to a method of making vertically protruding elements on a substrate, said elements having a tip comprising at least one inclined surface and an elongated body portion extending between said substrate and said tip. The method comprises an anisotropic, crystal plane dependent etch forming said inclined surface(s); and an anisotropic, non crystal plane dependent etch forming said elongated body portion; combined with suitable patterning processes defining said protruding elements to have a predetermined base geometry.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: November 13, 2012
    Assignee: Silex Microsystems AB
    Inventors: Edvard Kälvesten, Thorbjörn Ebefors, Thierry Corman
  • Publication number: 20120267773
    Abstract: A wafer level method of making a micro-electronic and/or micro-mechanic device, having a capping with electrical wafer through connections (vias), comprising the steps of providing a first wafer of a semiconductor material having a first and a second side and a plurality of holes and/or recesses in the first side, and a barrier structure extending over the wafer on the second side, said barrier comprising an inner layer an insulating material, such as oxide, and an outer layer of another material. Then, metal is applied in said holes so as to cover the walls in the holes and the bottom of the holes. The barrier structure is removed and contacts are provided to the wafer through connections on the back-side of the wafer. Bonding structures are provided on either of said first side or the second side of the wafer. The wafer is bonded to another wafer carrying electronic and micro-electronic/mechanic components, such that the first wafer forms a capping structure covering the second wafer.
    Type: Application
    Filed: November 19, 2009
    Publication date: October 25, 2012
    Applicant: SILEX Microsystems AB
    Inventors: Thorbjörn Ebefors, Edvard Kälvesten, Tomas Bauer
  • Publication number: 20120126392
    Abstract: The invention relates in a general aspect to a method of making vertically protruding elements on a substrate, said elements having a tip comprising at least one inclined surface and an elongated body portion extending between said substrate and said tip. The method comprises an anisotropic, crystal plane dependent etch forming said inclined surface(s); and an anisotropic, non crystal plane dependent etch forming said elongated body portion; combined with suitable patterning processes defining said protruding elements to have a predetermined base geometry.
    Type: Application
    Filed: October 21, 2011
    Publication date: May 24, 2012
    Applicant: SILEX MICROSYSTEMS AB
    Inventors: Edvard Kälvesten, Thorbjörn Ebefors, Thierry Corman