Patents by Inventor Edward A. Bennett

Edward A. Bennett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150211446
    Abstract: A fuel supply system for supplying a low boiling point fuel to an internal combustion engine of a vehicle includes a fuel tank that encloses a tank volume and includes a primary chamber within the tank volume, a head chamber within the tank volume, and a divider wall. The head chamber is configured to contain fuel up to a head height. The divider wall is attached to a wall of the fuel tank and separates the primary chamber and the head chamber. A fluid pathway guides fuel from along a floor of the tank in the primary chamber through the divider wall and into the head chamber at or above the head height, responsive to movement of the fuel in the primary chamber. An output port is located in a wall of the head chamber adjacent the floor.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 30, 2015
    Inventor: David Edward Bennett
  • Publication number: 20150198895
    Abstract: A method of performing nanolithography is disclosed, comprising use of an optical printing head that enables a super-resolution lithographic exposures compatible with conventional optical lithographic processes. The super-resolution exposures are carried out using light directed onto a data recording medium using plasmonic structures, and in particular using plasmonic structures using specially designed super-resolution apertures, of which the “bow-tie” and “C-aperture” are examples. These specially designed apertures create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to a data recording medium. A data processing system is provided to re-interpret the data to be patterned into a set of modulation signals used to drive the multiple individual channels and the multiple exposures.
    Type: Application
    Filed: August 26, 2014
    Publication date: July 16, 2015
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Publication number: 20150042971
    Abstract: A method of performing nanolithography is disclosed, comprising use of an optical printing head that enables a super-resolution lithographic exposures compatible with conventional optical lithographic processes. The super-resolution exposures are carried out using light directed onto a data recording medium using plasmonic structures, and in particular using plasmonic structures using specially designed super-resolution apertures, of which the “bow-tie” and “C-aperture” are examples. These specially designed apertures create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to a data recording medium. A data processing system is provided to re-interpret the data to be patterned into a set of modulation signals used to drive the multiple individual channels and the multiple exposures.
    Type: Application
    Filed: September 22, 2014
    Publication date: February 12, 2015
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Patent number: 8841637
    Abstract: A method of performing nanolithography is disclosed, comprising use of an optical printing head that enables a super-resolution lithographic exposures compatible with conventional optical lithographic processes. The super-resolution exposures are carried out using light transmitted through specially designed super-resolution apertures, of which the “bow-tie” and “C-aperture” are examples. These specially designed apertures create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the object to be exposed. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the multiple individual channels and the multiple exposures.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: September 23, 2014
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Publication number: 20140116982
    Abstract: A method for fabricating waveguides comprising nano-apertures for illumination of sub-resolution exposures is presented. In particular, the end of a waveguide, such as an optical fiber, is coated with a material, such as an electrically conducting metal or a semiconductor. This material is then selectively removed through a lithography process using photon exposure to create an aperture in the material at the end of the waveguide. Under normal conditions, if the aperture is smaller than the wavelength of light in the waveguide, there is little or no transmission through the aperture. However, with the appropriate selection of materials and aperture geometry, for example a metallic conducting coating and sub-wavelength “C-shaped” or “bow-tie” aperture, enhancement of the transmission of light through the aperture can be achieved, allowing effective illumination of sub-resolution spots using the nano-aperture. This can be used in a nanolithography system incorporating waveguide illuminators as well.
    Type: Application
    Filed: July 9, 2013
    Publication date: May 1, 2014
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Patent number: 8710463
    Abstract: A method for fabricating waveguides comprising nano-apertures for illumination of sub-resolution exposures is presented. In particular, the end of a waveguide, such as an optical fiber, is coated with a material, such as an electrically conducting metal or a semiconductor. This material is then selectively removed through a lithography process using photon exposure to create an aperture in the material at the end of the waveguide. Under normal conditions, if the aperture is smaller than the wavelength of light in the waveguide, there is little or no transmission through the aperture. However, with the appropriate selection of materials and aperture geometry, for example a metallic conducting coating and sub-wavelength “C-shaped” or “bow-tie” aperture, enhancement of the transmission of light through the aperture can be achieved, allowing effective illumination of sub-resolution spots using the nano-aperture. This can be used in a nanolithography system incorporating waveguide illuminators as well.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: April 29, 2014
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Publication number: 20140055769
    Abstract: A method of performing nanolithography is disclosed, comprising use of an optical printing head that enables a super-resolution lithographic exposures compatible with conventional optical lithographic processes. The super-resolution exposures are carried out using light transmitted through specially designed super-resolution apertures, of which the “bow-tie” and “C-aperture” are examples. These specially designed apertures create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the object to be exposed. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the multiple individual channels and the multiple exposures.
    Type: Application
    Filed: August 12, 2013
    Publication date: February 27, 2014
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Patent number: 8507880
    Abstract: A method for fabricating waveguides comprising nano-apertures for illumination of sub-resolution exposures is presented. In particular, the end of a waveguide, such as an optical fiber, is coated with a material, such as an electrically conducting metal or a semiconductor. This material is then selectively removed through the process of ion milling, creating an aperture in the material at the end of the waveguide. Under normal conditions, if the aperture is smaller than the wavelength of light in the waveguide, there is little or no transmission through the aperture. However, with the appropriate selection of materials and aperture geometry, for example a metallic conducting coating and sub-wavelength “C-shaped” or “bow-tie” aperture, enhancement of transmission of light through the aperture can be achieved, allowing effective illumination of sub-resolution spots using the ion-milled aperture. This can be used in a nanolithography system incorporating waveguide illuminators as well.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: August 13, 2013
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Patent number: 8507881
    Abstract: A nanolithography system comprising a novel optical printing head suitable for high throughput nanolithography. This optical head enables a super-resolution lithographic exposure tool that is otherwise compatible with the optical lithographic process infrastructure. The exposing light is transmitted through specially designed super-resolution apertures, of which the “C-aperture” is one example, that create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the wafer to be exposed. In one embodiment, an illumination source is divided into parallel channels that illuminate each of the apertures. Each of these channels can be individually modulated to provide the appropriate exposure for the particular location on the wafer corresponding to the current position of the aperture. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the individual channels.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: August 13, 2013
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Publication number: 20120312774
    Abstract: A method for fabricating waveguides comprising nano-apertures for illumination of sub-resolution exposures is presented. In particular, the end of a waveguide, such as an optical fiber, is coated with a material, such as an electrically conducting metal or a semiconductor. This material is then selectively removed through the process of ion milling, creating an aperture in the material at the end of the waveguide. Under normal conditions, if the aperture is smaller than the wavelength of light in the waveguide, there is little or no transmission through the aperture. However, with the appropriate selection of materials and aperture geometry, for example a metallic conducting coating and sub-wavelength “C-shaped” or “bow-tie” aperture, enhancement of transmission of light through the aperture can be achieved, allowing effective illumination of sub-resolution spots using the ion-milled aperture. This can be used in a nanolithography system incorporating waveguide illuminators as well.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 13, 2012
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Patent number: 8193519
    Abstract: A nanolithography system comprising a novel optical printing head suitable for high throughput nanolithography. This optical head enables a super-resolution lithographic exposure tool that is otherwise compatible with the optical lithographic process infrastructure. The exposing light is transmitted through specially designed super-resolution apertures, of which the “C-aperture” is one example, that create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the wafer to be exposed. In one embodiment, an illumination source is divided into parallel channels that illuminate each of the apertures. Each of these channels can be individually modulated to provide the appropriate exposure for the particular location on the wafer corresponding to the current position of the aperture. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the individual channels.
    Type: Grant
    Filed: September 5, 2009
    Date of Patent: June 5, 2012
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Publication number: 20110270745
    Abstract: A method suitable for electronically facilitating a transaction between a donor and a recipient comprises the steps of: matching the recipient to the donor based on at least one predetermined matching criterion; transferring at least a first portion of a donation amount from the donor to the recipient; and transmitting donor web content to the recipient in response to conditional acceptance by the recipient of at least the first portion of the donation amount.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 3, 2011
    Inventors: Ayman A. Azzi, Edward Bennett, Samir Chreim
  • Patent number: 7989783
    Abstract: A nanolithography system comprising a novel optical printing head suitable for high throughput nanolithography. This optical head enables a super-resolution lithographic exposure tool that is otherwise compatible with the optical lithographic process infrastructure. The exposing light is transmitted through specially designed super-resolution apertures, of which the “C-aperture” is one example, that create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the wafer to be exposed. In one embodiment, an illumination source is divided into parallel channels that illuminate each of the apertures. Each of these channels can be individually modulated to provide the appropriate exposure for the particular location on the wafer corresponding to the current position of the aperture. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the individual channels.
    Type: Grant
    Filed: September 5, 2009
    Date of Patent: August 2, 2011
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Publication number: 20100073657
    Abstract: A nanolithography system comprising a novel optical printing head suitable for high throughput nanolithography. This optical head enables a super-resolution lithographic exposure tool that is otherwise compatible with the optical lithographic process infrastructure. The exposing light is transmitted through specially designed super-resolution apertures, of which the “C-aperture” is one example, that create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the wafer to be exposed. In one embodiment, an illumination source is divided into parallel channels that illuminate each of the apertures. Each of these channels can be individually modulated to provide the appropriate exposure for the particular location on the wafer corresponding to the current position of the aperture. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the individual channels.
    Type: Application
    Filed: September 5, 2009
    Publication date: March 25, 2010
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Publication number: 20100075259
    Abstract: A nanolithography system comprising a novel optical printing head suitable for high throughput nanolithography. This optical head enables a super-resolution lithographic exposure tool that is otherwise compatible with the optical lithographic process infrastructure. The exposing light is transmitted through specially designed super-resolution apertures, of which the “C-aperture” is one example, that create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the wafer to be exposed. In one embodiment, an illumination source is divided into parallel channels that illuminate each of the apertures. Each of these channels can be individually modulated to provide the appropriate exposure for the particular location on the wafer corresponding to the current position of the aperture. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the individual channels.
    Type: Application
    Filed: September 5, 2009
    Publication date: March 25, 2010
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Patent number: 7586583
    Abstract: A nanolithography system comprising a novel optical printing head suitable for high throughput nanolithography. This optical head enables a super-resolution lithographic exposure tool that is otherwise compatible with the optical lithographic process infrastructure. The exposing light is transmitted through specially designed super-resolution apertures, of which the “C-aperture” is one example, that create small but bright images in the near-field transmission pattern. A printing head comprising an array of these apertures is held in close proximity to the wafer to be exposed. In one embodiment, an illumination source is divided into parallel channels that illuminate each of the apertures. Each of these channels can be individually modulated to provide the appropriate exposure for the particular location on the wafer corresponding to the current position of the aperture. A data processing system is provided to re-interpret the layout data into a modulation pattern used to drive the individual channels.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: September 8, 2009
    Inventors: Franklin Mark Schellenberg, Keith Edward Bennett
  • Patent number: 7160103
    Abstract: An apparatus and method for modifying the appearance of a flame to maximize the size of the flame for a given amount of fuel, increase a burn rate efficiency of the flame, or change the shape of the flame. The shape and size of the flame may be modified by applying a secondary source of fluid to the flame. The secondary source of fluid may cause turbulent fluid flow within the combustion chamber enclosure in which the flame is produced to change the appearance of the flame. The secondary source of fluid may be generated by a blower or fan and may include, for example, a source of fresh combustion air, additional flammable gas such as natural gas, or other fluid additives for enhancement of the flame color, shape, and size.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: January 9, 2007
    Assignee: HNI Technologies Inc.
    Inventors: Gary Lee Butler, Chad William Hendrickson, Robb Edward Bennett, Stephen G. Smith, Thomas J. Bachinski, David Charles Lyons
  • Patent number: 7056113
    Abstract: A gas light assembly including a stand member having a recessed portion sized to receive a fuel container. The recessed portion is accessible through an opening of the stand member. A panel member is coupled to the stand member and movable between a closed position covering the recessed portion and an open position wherein the recessed portion is accessible for inserting or removing the fuel container.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: June 6, 2006
    Assignee: Fire Stone Home Products, LLC
    Inventors: Thomas J. Bachinski, Robb Edward Bennett, Douglas Mark Holm
  • Publication number: 20060021408
    Abstract: A cleaning apparatus for removing metallic buildup from forming surfaces of metal forming dies while the dies are in a press and operating at elevated temperatures. The cleaning apparatus includes a programmable positioner having a robotic arm with an end effector carrying a brush assembly. The brush assembly includes a rotary drive motor rotatably carrying a metallic wire brush. The brush has a plurality of radially extending plain carbon steel bristles having tips adapted for removing metallic buildup from the forming surfaces of dies. The positioner operates to move the rotatable wire brush in a predetermined path that engages the brush with the forming surfaces of the dies for sweeping and cleaning metallic buildup from the forming surfaces.
    Type: Application
    Filed: July 28, 2004
    Publication date: February 2, 2006
    Inventors: Richard Hammar, Gary Kruger, James Schroth, Edward Bennett, Curtis Shinabarker
  • Publication number: 20050188734
    Abstract: Apparatus for hot gas blow-forming including opposed heated and insulated tool containers, each including a tool heater plate that is adapted for attachment to a platen of a press with one or more load bearing spacers interposed between the tool heater plate and the platen. Each tool container also includes an insulation enclosure having a base portion that is interposed between the tool heater plate and the platen and further having perimeter wall portion that surrounds the tool heater plate. A perimeter seal is preferably attached to at least one of the heated and insulated tool containers and is adapted for sealing engagement with the other of the heated and insulated tool containers.
    Type: Application
    Filed: February 27, 2004
    Publication date: September 1, 2005
    Inventors: James Schroth, Richard Kleber, Richard Hammar, Edward Bennett