Patents by Inventor Edward A. Sturm

Edward A. Sturm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9897257
    Abstract: A fluid supply package comprising a pressure-regulated fluid storage and dispensing vessel, a valve head adapted for dispensing of fluid from the vessel, and an anti-pressure spike assembly adapted to combat pressure spiking in flow of fluid at inception of fluid dispensing.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: February 20, 2018
    Assignee: ENTEGRIS, INC.
    Inventors: Joseph R. Despres, Joseph D. Sweeney, Edward E. Jones, Matthew B. Donatucci, Chiranjeevi Pydi, Edward A. Sturm, Barry Lewis Chambers, Gregory Scott Baumgart
  • Publication number: 20180023765
    Abstract: A fluid supply package is described, which includes a fluid storage and dispensing vessel, and a fluid dispensing assembly coupled to the vessel and configured to enable discharge of fluid from the vessel under dispensing conditions, wherein the fluid supply package includes an informational augmentation device thereon, e.g., at least one of a quick read (QR) code and an RFID tag, for informational augmentation of the package. Process systems are described including process tools and one or more fluid supply packages of the foregoing type, wherein the process tool is configured for communicative interaction with the fluid supply package(s). Various communicative arrangements are described, which are usefully employed to enhance the efficiency and operation of process systems in which fluid supply packages of the foregoing type are employed.
    Type: Application
    Filed: February 12, 2016
    Publication date: January 25, 2018
    Inventors: Joseph D. SWEENEY, Edward E. JONES, Joseph R. SPRES, Richard S. RAY, Peter C. VAN BUSKIRK, Edward A. STURM, Chris SCANNELL
  • Patent number: 9630895
    Abstract: A carbon adsorbent adapted for adsorptive storage and subsequent desorptive release of a decomposition-susceptible gas is described. Such carbon adsorbent comprises porosity in which mesopore volume is less than 0.25 cm3/gm of carbon adsorbent, in which the porosity comprises at least 80% by volume micropores, and at least 65% by volume of the micropores have pore diameter in a range of from 0.3 to 0.72 nm. The carbon adsorbent has a nitrogen adsorption BET surface area greater than 800 m2/g of carbon adsorbent, measured at 77° K, and a bulk density that is greater than 0.55 g/cc of carbon adsorbent. The carbon adsorbent can be utilized in gas storage and dispensing packages of varying type, to provide a safe and reliable source of decomposition-susceptible gas, e.g., acetylene for applications such as gas welding/cutting applications, atomic absorption spectroscopy applications, chemical synthesis and microelectronic products manufacturing.
    Type: Grant
    Filed: April 13, 2013
    Date of Patent: April 25, 2017
    Assignee: Entegris, Inc.
    Inventors: Edward A. Sturm, Thomas H. Baum, J. Donald Carruthers
  • Publication number: 20170003056
    Abstract: An adsorbent assembly for use in an adsorption heating and/or cooling system is described. The adsorbent assembly includes an array of adsorbent articles in which at least one adsorbent article is arranged in at least one of the following compatible arrangements (i)-(iii): (i) in contact with at least one other adsorbent article along matable engagement surfaces of respective contacting articles, with the contacting articles being configured to form a communicating gas flow passage through the contacting articles or at peripheral portions thereof; (ii) in a tube comprising at least one matable engagement surface that is in contact with a complementary matable engagement surface of another tube containing at least one adsorbent article; and (iii) in contact with a deformable foil member that is in contact with at least one other adsorbent article and/or a heat transfer member.
    Type: Application
    Filed: November 28, 2014
    Publication date: January 5, 2017
    Applicant: ENTEGRIS, INC.
    Inventors: Edward A. Sturm, J. Donald Carruthers, Shaun M. Wilson, Michael J. Wodjenski, Lawrence H. Dubois
  • Patent number: 9518971
    Abstract: A system and method for recovering high value gas from a process stream, material or environment containing same, e.g., xenon by contacting gas from the process stream, material or environment with a carbon adsorbent effective to sorptively capture same, free of or with reduced concentration of fluid species present with the high value gas in the high value gas-containing gas in the process stream, material or environment. Other aspects of the disclosure include a radon detection method and product.
    Type: Grant
    Filed: October 4, 2014
    Date of Patent: December 13, 2016
    Assignee: ENTEGRIS, INC.
    Inventors: Thomas H. Baum, J. Donald Carruthers, Richard Fricke, Joshua B. Sweeney, James V. McManus, Edward A. Sturm
  • Patent number: 9468901
    Abstract: A polyvinylidene fluoride (PVDF) pyrolyzate adsorbent is described, having utility for storing gases in an adsorbed state, and from which adsorbed gas may be desorbed to supply same for use. The PVDF pyrolyzate adsorbent can be of monolithic unitary form, or in a bead, powder, film, particulate or other finely divided form. The adsorbent is particularly suited for storage and supply of fluorine-containing gases, such as fluorine gas, nitrogen trifluoride, carbo-fluoride gases, and the like. The adsorbent may be utilized in a gas storage and dispensing system, in which the adsorbent is contained in a supply vessel, from which sorbate gas can be selectively dispensed.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: October 18, 2016
    Assignee: ENTEGRIS, INC.
    Inventors: Shaun M. Wilson, Edward A. Sturm
  • Patent number: 9370744
    Abstract: A particulate form carbon pyrolyzate adsorbent, having the following characteristics: (a) CO2 capacity greater than 105 cc/gram at one bar pressure and temperature of 273° Kelvin; (b) CO2 Working Capacity greater than 7.0 weight percent; (c) CO2 heats of adsorption and desorption each of which is in a range of from 10 to 50 kJ/mole; and (d) a CO2/N2 Henry's Law Separation Factor greater than 5. The carbon pyrolyzate material can be formed from a polyvinylidene chloride-based polymer or copolymer, or other suitable resin material, to provide an adsorbent that is useful for carbon dioxide capture applications, e.g., in treatment of flue gases from coal-fired power generation plants.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: June 21, 2016
    Assignee: ENTEGRIS, INC.
    Inventors: Melissa A. Petruska, J. Donald Carruthers, Edward A. Sturm, Shaun M. Wilson, Joshua B. Sweeney
  • Publication number: 20160089655
    Abstract: A polyvinylidene fluoride (PVDF) pyrolyzate adsorbent is described, having utility for storing gases in an adsorbed state, and from which adsorbed gas may be desorbed to supply same for use. The PVDF pyrolyzate adsorbent can be of monolithic unitary form, or in a bead, powder, film, particulate or other finely divided form. The adsorbent is particularly suited for storage and supply of fluorine-containing gases, such as fluorine gas, nitrogen trifluoride, carbo-fluoride gases, and the like. The adsorbent may be utilized in a gas storage and dispensing system, in which the adsorbent is contained in a supply vessel, from which sorbate gas can be selectively dispensed.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 31, 2016
    Applicant: Entegris, Inc.
    Inventors: Shaun M. Wilson, Edward A. Sturm
  • Patent number: 9283512
    Abstract: A carbon pyrolyzate adsorbent is described that is selective for carbon dioxide in contact with gas mixtures including carbon dioxide and methane. The adsorbent has a carbon dioxide adsorbent capacity at 1 bar pressure of greater than 50 cm3 carbon dioxide per gram of adsorbent at 273K, a methane adsorption capacity at 1 bar pressure of less than 35 cm3 methane per gram of adsorbent at 21° C., and a bulk density of greater than 0.55 gram per cubic centimeter of volume. Such adsorbent can be utilized, for example, for biogas upgrading, natural gas purification, coal bed methane purification, and refining operations.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: March 15, 2016
    Assignee: ENTEGRIS, INC.
    Inventors: J. Donald Carruthers, Melissa A. Petruska, Shaun M. Wilson, Edward A. Sturm
  • Publication number: 20160030879
    Abstract: A particulate form carbon pyrolyzate adsorbent, having the following characteristics: (a) CO2 capacity greater than 105 cc/gram at one bar pressure and temperature of 273° Kelvin; (b) CO2 Working Capacity greater than 7.0 weight percent; (c) CO2 heats of adsorption and desorption each of which is in a range of from 10 to 50 kJ/mole; and (d) a CO2/N2 Henry's Law Separation Factor greater than 5. The carbon pyrolyzate material can be formed from a polyvinylidene chloride-based polymer or copolymer, or other suitable resin material, to provide an adsorbent that is useful for carbon dioxide capture applications, e.g., in treatment of flue gases from coal-fired power generation plants.
    Type: Application
    Filed: October 13, 2015
    Publication date: February 4, 2016
    Applicant: Entegris, Inc.
    Inventors: Melissa A. Petruska, J. Donald Carruthers, Edward A. Sturm, Shaun M. Wilson, Joshua B. Sweeney
  • Publication number: 20160020102
    Abstract: Ion implantation processes and systems are described, in which carbon dopant source materials are utilized to effect carbon doping. Various gas mixtures are described, including a carbon dopant source material, as well as co-flow combinations of gases for such carbon doping. Provision of in situ cleaning agents in the carbon dopant source material is described, as well as specific combinations of carbon dopant source gases, hydride gases, fluoride gases, noble gases, oxide gases and other gases.
    Type: Application
    Filed: February 13, 2013
    Publication date: January 21, 2016
    Applicant: Entegris Inc.
    Inventors: Oleg Byl, Edward A. Sturm, Ying Tang, Sharad N. Yedave, Joseph D. Sweeney, Steven G. Sergi, Barry Lewis Chambers
  • Patent number: 9234628
    Abstract: A polyvinylidene fluoride (PVDF) pyrolyzate adsorbent is described, having utility for storing gases in an adsorbed state, and from which adsorbed gas may be desorbed to supply same for use. The PVDF pyrolyzate adsorbent can be of monolithic unitary form, or in a bead, powder, film, particulate or other finely divided form. The adsorbent is particularly suited for storage and supply of fluorine-containing gases, such as fluorine gas, nitrogen trifluoride, carbo-fluoride gases, and the like. The adsorbent may be utilized in a gas storage and dispensing system, in which the adsorbent is contained in a supply vessel, from which sorbate gas can be selectively dispensed.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: January 12, 2016
    Assignee: ENTEGRIS, INC.
    Inventors: Shaun M. Wilson, Edward A. Sturm
  • Publication number: 20150360164
    Abstract: A carbon pyrolyzate adsorbent is described that is selective for carbon dioxide in contact with gas mixtures including carbon dioxide and methane. The adsorbent has a carbon dioxide adsorbent capacity at 1 bar pressure of greater than 50 cm3 carbon dioxide per gram of adsorbent at 273K, a methane adsorption capacity at 1 bar pressure of less than 35 cm3 methane per gram of adsorbent at 21° C., and a bulk density of greater than 0.55 gram per cubic centimeter of volume. Such adsorbent can be utilized, for example, for biogas upgrading, natural gas purification, coal bed methane purification, and refining operations.
    Type: Application
    Filed: August 24, 2015
    Publication date: December 17, 2015
    Applicant: ENTEGRIS, INC.
    Inventors: J. Donald Carruthers, Melissa A. Petruska, Shaun M. Wilson, Edward A. Sturm
  • Patent number: 9186650
    Abstract: A carbon pyrolyzate adsorbent is described that is selective for carbon dioxide in contact with gas mixtures including carbon dioxide and methane. The adsorbent has a carbon dioxide adsorbent capacity at 1 bar pressure of greater than 50 cm3 carbon dioxide per gram of adsorbent at 273K, a methane adsorption capacity at 1 bar pressure of less than 35 cm3 methane per gram of adsorbent at 21° C., and a bulk density of greater than 0.55 gram per cubic centimeter of volume. Such adsorbent can be utilized, for example, for biogas upgrading, natural gas purification, coal bed methane purification, and refining operations.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: November 17, 2015
    Assignee: ENTEGRIS, INC.
    Inventors: J. Donald Carruthers, Melissa A. Petruska, Shaun M. Wilson, Edward A. Sturm
  • Patent number: 9156020
    Abstract: A particulate form carbon pyrolyzate adsorbent, having the following characteristics: (a) CO2 capacity greater than 105 cc/gram at one bar pressure and temperature of 273° Kelvin; (b) CO2 Working Capacity greater than 7.0 weight percent; (c) CO2 heats of adsorption and desorption each of which is in a range of from 10 to 50 kJ/mole; and (d) a CO2/N2 Henry's Law Separation Factor greater than 5. The carbon pyrolyzate material can be formed from a polyvinylidene chloride-based polymer or copolymer, or other suitable resin material, to provide an adsorbent that is useful for carbon dioxide capture applications, e.g., in treatment of flue gases from coal-fired power generation plants.
    Type: Grant
    Filed: March 28, 2015
    Date of Patent: October 13, 2015
    Assignee: ENTEGRIS, INC.
    Inventors: Melissa A. Petruska, J. Donald Carruthers, Edward A. Sturm, Shaun M. Wilson, Joshua B. Sweeney
  • Patent number: 9126139
    Abstract: A durable carbon pyrolyzate adsorbent having reversible sorptive affinity for hydrogen sulfide, and including the following characteristics: (a) a bulk density as measured by ASTM D2854 in a range of from 0.55 g/cc adsorbent to 1.25 g/cc adsorbent; (b) an H2S capacity in a range of from 140 cc H2S/g adsorbent to 250 cc H2S/g adsorbent, at normal conditions (1 atm, 293.15° K); (c) an H2S capacity in a range of from 1.0 cc H2S/g adsorbent to 15.0 cc H2S/g adsorbent, at partial pressure of 0.76 torr (101.3 Pa) (1000 ppm) of H2S at 293.15° K; and (d) a single pellet radial crush strength in a range of from 7 kilopond (kP) to 40 kilopond (kP) as measured by ASTM D4179.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: September 8, 2015
    Assignee: ENTEGRIS, INC.
    Inventors: Shaun M. Wilson, Edward A. Sturm, Michael J. Wodjenski, J. Donald Carruthers, Joshua B. Sweeney
  • Publication number: 20150247605
    Abstract: A fluid supply package comprising a pressure-regulated fluid storage and dispensing vessel, a valve head adapted for dispensing of fluid from the vessel, and an anti-pressure spike assembly adapted to combat pressure spiking in flow of fluid at inception of fluid dispensing.
    Type: Application
    Filed: September 20, 2013
    Publication date: September 3, 2015
    Inventors: Joseph R. Despres, Joseph D. Sweeney, Edward E. Jones, Matthew B. Donatucci, Chiranjeevi Pydi, Edward A. Sturm, Barry Lewis Chambers, Gregory Scott Baumgart
  • Publication number: 20150202593
    Abstract: A particulate form carbon pyrolyzate adsorbent, having the following characteristics: (a) CO2 capacity greater than 105 cc/gram at one bar pressure and temperature of 273° Kelvin; (b) CO2 Working Capacity greater than 7.0 weight percent; (c) CO2 heats of adsorption and desorption each of which is in a range of from 10 to 50 kJ/mole; and (d) a CO2/N2 Henry's Law Separation Factor greater than 5. The carbon pyrolyzate material can be formed from a polyvinylidene chloride-based polymer or copolymer, or other suitable resin material, to provide an adsorbent that is useful for carbon dioxide capture applications, e.g., in treatment of flue gases from coal-fired power generation plants.
    Type: Application
    Filed: March 28, 2015
    Publication date: July 23, 2015
    Applicant: ENTEGRIS, INC.
    Inventors: Melissa A. Petruska, J. Donald Carruthers, Edward A. Sturm, Shaun M. Wilson, Joshua B. Sweeney
  • Publication number: 20150119610
    Abstract: A carbon adsorbent adapted for adsorptive storage and subsequent desorptive release of a decomposition-susceptible gas is described. Such carbon adsorbent comprises porosity in which mesopore volume is less than 0.25 cm3/gm of carbon adsorbent, in which the porosity comprises at least 80% by volume micropores, and at least 65% by volume of the micropores have pore diameter in a range of from 0.3 to 0.72 nm. The carbon adsorbent has a nitrogen adsorption BET surface area greater than 800 m2/g of carbon adsorbent, measured at 77° K, and a bulk density that is greater than 0.55 g/cc of carbon adsorbent. The carbon adsorbent can be utilized in gas storage and dispensing packages of varying type, to provide a safe and reliable source of decomposition-susceptible gas, e.g., acetylene for applications such as gas welding/cutting applications, atomic absorption spectroscopy applications, chemical synthesis and microelectronic products manufacturing.
    Type: Application
    Filed: April 13, 2013
    Publication date: April 30, 2015
    Inventors: Edward A. Sturm, Thomas H. Baum, J. Donald Carruthers
  • Patent number: 9017453
    Abstract: A particulate form carbon pyrolyzate adsorbent, having the following characteristics: (a) CO2 capacity greater than 105 cc/gram at one bar pressure and temperature of 273° Kelvin; (b) CO2 Working Capacity greater than 7.0 weight percent; (c) CO2 heats of adsorption and desorption each of which is in a range of from 10 to 50 kJ/mole; and (d) a CO2/N2 Henry's Law Separation Factor greater than 5. The carbon pyrolyzate material can be formed from a polyvinylidene chloride-based polymer or copolymer, or other suitable resin material, to provide an adsorbent that is useful for carbon dioxide capture applications, e.g., in treatment of flue gases from coal-fired power generation plants.
    Type: Grant
    Filed: January 29, 2012
    Date of Patent: April 28, 2015
    Assignee: Entegris, Inc.
    Inventors: Melissa A. Petruska, J. Donald Carruthers, Edward A. Sturm, Shaun M. Wilson, Joshua B. Sweeney