Patents by Inventor Edward A. Sturm

Edward A. Sturm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6178925
    Abstract: A liquid delivery apparatus for vaporizing a liquid to produce a vapor therefrom. The apparatus incorporates a vaporizer with a surface arranged to receive liquid thereon. A liquid feed assembly is provided, including (i) a liquid source and (ii) a liquid flow circuit coupled to the liquid source and arranged to discharge liquid onto the vaporizer surface during liquid vaporization operation. The apparatus features a burst purging assembly including a pressurized gas source joined in gas flow communication with the liquid flow circuit. The pressurized gas source is arranged to introduce a clearance burst of pressurized gas into the liquid flow circuit after completion of the liquid vaporization operation, so that hold-up liquid in the liquid flow circuit and/or vaporizer following completion of the liquid vaporization operation is discharged onto the vaporizer surface and vaporized.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: January 30, 2001
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Edward A. Sturm, Gautam Bhandari, Craig Ragaglia
  • Patent number: 6123993
    Abstract: A method and apparatus for forming a low dielectric constant polymeric film on a substrate, by liquid delivery of a parylene precursor reagent, in the form of an organic solution or a neat liquid, subsequent flash vaporization of the neat liquid or organic solution, pyrolytic "cracking" of the precursor to form the reactive monomer and/or reactive radical species, and condensation and polymerization of the monomer and/or reactive radical species to form a low dielectric constant polymeric film on the substrate. The low dielectric constant polymeric film may comprise a parylene film, formed from a precursor such as [2.2]paracyclophane, an alkyl- and/or halo-substituted derivative thereof, or an analogous compound of a p-xylene derivative.
    Type: Grant
    Filed: September 21, 1998
    Date of Patent: September 26, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Chongying Xu, Thomas H. Baum, Ralph J. Carl, Edward A. Sturm
  • Patent number: 6017628
    Abstract: An article (130) comprising a non-conductive substrate (136), preferably of an environmentally degradeable character, having a thickness of an oxidizable metal coating (138) thereon, and optionally an oxidation enhancingly effective amount of a salt (140), e.g., from about 0.005 to about 25% by weight of salt, based on the weight of oxidizable metal, present on the oxidizable metal coating. Also disclosed is a related method of forming such article, comprising chemical vapor depositing the oxidizable metal coating on the substrate. When utilized in a form comprising fine-diameter substrate elements such as filaments, the resulting product may be usefully employed as an "evanescent" chaff. In the presence of atmospheric moisture, such evanescent chaff undergoes oxidization of the oxidizable metal coating so that the conductivity and radar absorbance/reflectance characteristics of the chaff transiently decays.
    Type: Grant
    Filed: January 8, 1997
    Date of Patent: January 25, 2000
    Assignee: Alliant Defense Electronics Systems, Inc.
    Inventors: Ward C Stevens, Edward A. Sturm
  • Patent number: 5880692
    Abstract: An article comprising a non-conductive substrate, preferably of an environmentally degradeable character, having a thickness of an oxidizable metal coating thereon, and optionally an oxidation enhancingly effective amount of a salt, e.g., from about 0.005 to about 25% by weight of salt, based on the weight of oxidizable metal, present on the oxidizable metal coating. Also disclosed is a related method of forming such article, comprising chemical vapor depositing the oxidizable metal coating on the substrate. When utilized in a form comprising fine-diameter substrate elements such as filaments, the resulting product may be usefully employed as an "evanescent" chaff. In the presence of atmospheric moisture, such evanescent chaff undergoes oxidization of the oxidizable metal coating so that the conductivity and radar absorbance/reflectance characteristics of the chaff transiently decays.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 9, 1999
    Assignee: Alliant Defense Electronic Systems, Inc.
    Inventors: Ward C. Stevens, Edward A. Sturm
  • Patent number: 5686178
    Abstract: An article comprising a non-conductive substrate, preferably of an environmentally degradeable character, having a thickness of an oxidizable metal coating thereon, and optionally an oxidation enhancingly effective amount of a salt, e.g., from about 0.005 to about 25% by weight of salt, based on the weight of oxidizable metal, present on the oxidizable metal coating. Also disclosed is a related method of forming such article, comprising chemical vapor depositing the oxidizable metal coating on the substrate. When utilized in a form comprising fine-diameter substrate elements such as filaments, the resulting product may be usefully employed as an "evanescent" chaff. In the presence of atmospheric moisture, such evanescent chaff undergoes oxidization of the oxidizable metal coating so that the conductivity and radar absorbance/reflectance characteristics of the chaff transiently decays.
    Type: Grant
    Filed: July 11, 1994
    Date of Patent: November 11, 1997
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ward C. Stevens, Edward A. Sturm
  • Patent number: 5571621
    Abstract: An infrared radiation-interactive article comprising a supported or unsupported oxidizable metal film of an infrared radiation-interactive size and shape, with an oxidation-promoting salt in contact with the metal film, arranged so that in exposure to ambient moisture, the metal film is oxidizable to an infrared radiation non-interactive form. The article of the invention may be employed to carry out a method of generating a transient infrared radiation response, e.g., an infrared radiation reflectance signature, or infrared radiation absorption, at a selected locus receiving infrared radiation incident thereon, by disposing at the locus an infrared radiation interactively-effective amount of such infrared radiation-interactive article.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 5, 1996
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ward C. Stevens, Edward A. Sturm
  • Patent number: 5352519
    Abstract: An article comprising a non-conductive substrate having a sub-micron thickness of a sulfur-doped oxidizable metal coating thereon. Optionally, the sulfur-doped oxidizable metal-coated substrate may be further coated with (i) a promoter metal which is galvanically effective to promote the corrosion of the oxidizable metal, discontinuously coated on the oxidizable metal coating, and/or (ii) a salt, to accelerate the galvanic corrosion reaction by which the oxidizable metal coating is oxidized. When utilized in a form comprising fine diameter substrate elements such as glass or ceramic filaments, the resulting product may usefully be employed as an evanescent chaff. In the presence of atmospheric moisture, such evanescent chaff undergoes oxidation of the oxidizable metal coating so that the radar signature of the chaff transiently decays.
    Type: Grant
    Filed: November 27, 1992
    Date of Patent: October 4, 1994
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ward C. Stevens, Edward A. Sturm, Bruce C. Roman
  • Patent number: 5328717
    Abstract: An article comprising a non-conductive substrate having a sub-micron thickness of an oxidizable metal coating thereon, and an oxidation enhancingly effective amount of a salt, e.g., from about 0.005 to about 25% by weight of salt, based on the weight of oxidizable metal, present on the oxidizable metal coating. Also disclosed is a related method of forming such article, comprising chemical vapor depositing the oxidizable metal coating on the substrate, applying the salt by contacting of the oxidizable metal-coated substrate with a salt solution, and drying of the salt solution on the oxidizable metal film to yield the product salt-doped, oxidizable metal-coated substrate article. When utilized in a form comprising fine-diameter substrate elements such as glass or ceramic filaments, the resulting product may be usefully employed as an "evanescent" chaff.
    Type: Grant
    Filed: July 22, 1991
    Date of Patent: July 12, 1994
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ward C. Stevens, Edward A. Sturm, Bruce C. Roman
  • Patent number: 5234715
    Abstract: An article comprising a non-conductive substrate having a sub-micron thickness of an oxidizable conductive first metal coating thereon, and a second (promoter) metal which is galvanically effective to promote the corrosion of the first metal, discontinuously coated on the first metal coating. Optionally, the second metal-doped, first metal-coated substrate may be further coated with a salt, to accelerate the galvanic corrosion reaction by which the conductive first metal coating is oxidized. Also disclosed is a related method of forming such articles, comprising chemical vapor depositing the first metal on the substrate and chemical vapor depositing the second metal on the applied first metal coating, and of optionally applying a salt by salt solution contacting of the second metal-doped, first metal-coated substrate. When utilized in a form comprising fine-diameter substrate elements such as glass or ceramic filaments, the resulting product may be usefully employed as an evanescent chaff.
    Type: Grant
    Filed: August 7, 1991
    Date of Patent: August 10, 1993
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ward C. Stevens, Edward A. Sturm, Delwyn F. Cummings
  • Patent number: 5087515
    Abstract: An article comprising a non-conductive substrate which is coated with a sub-micron thickness of an oxidizable metal and overcoated with a microporous layer of an inorganic electrically insulative material. Optionally, the oxidizable metal-coated substrate may be sulfurized and/or further coated with (i) a promoter metal which is galvanically effective to promote the corrosion of the oxidizable metal, discontinuously coated on the oxidizable metal coating, and/or (ii) a salt, to accelerate the galvanic corrosion reaction by which the oxidizable metal coating is oxidized, prior to overcoating with the microporous insulative layer. Also disclosed is a related method of forming such articles, comprising chemical vapor depositing the oxidizable metal coating on the substrate and contacting the metallized substrate with a sol gel dispersion of the inorganic electrically insulative material which then is dried under suitable conditions to form the microporous layer on the substrate.
    Type: Grant
    Filed: December 11, 1989
    Date of Patent: February 11, 1992
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ward C. Stevens, Edward A. Sturm, Bruce C. Roman
  • Patent number: 5039990
    Abstract: An article comprising a non-conductive substrate having a sub-micron thickness of an oxidizable conductive first metal coating thereon, and a second (promoter) metal which is galvanically effective to promote the corrosion of the first metal, discontinuously coated on the first metal coating. Optionally, the second metal-doped, first metal-coated substrate may be further coated with a salt, to accelerate the galvanic corrosion reaction by which the conductive first metal coating is oxidized. Also disclosed is a related method of forming such articles, comprising chemical vapor depositing the first metal on the substrate and chemical vapor depositing the second metal on the applied first metal coating, and of optionally applying a salt by salt solution contacting of the second metal-doped, first metal-coated substrate. When utilized in a form comprising fine-diameter substrate elements such as glass or ceramic filaments, the resulting product may be usefully employed as an evanescent chaff.
    Type: Grant
    Filed: December 11, 1989
    Date of Patent: August 13, 1991
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ward C. Stevens, Edward A. Sturm, Delwyn F. Cummings
  • Patent number: 5034274
    Abstract: An article comprising a non-conductive substrate having a sub-micron thickness of an oxidizable metal coating thereon, and an oxidation enhancingly effective amount of a salt, e.g., from about 0.005 to about 25% by weight of salt, based on the weight of oxidizable metal, present on the oxidizable metal coating. Also disclosed is a related method of forming such article, comprising chemical vapor depositing the oxidizable metal coating on the substrate, applying the salt by contacting of the oxidizable metal-coated substrate with a salt solution, and drying of the salt solution on the oxidizable metal film to yield the product salt-doped, oxidizable metal-coated substrate article. When utilized in a form comprising fine-diameter substrate elements such as glass or ceramic filaments, the resulting product may be usefully employed as an "evanescent" chaff.
    Type: Grant
    Filed: December 11, 1989
    Date of Patent: July 23, 1991
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ward C. Stevens, Edward A. Sturm, Bruce C. Roman