Patents by Inventor Edward Bryner

Edward Bryner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10795373
    Abstract: A system includes an inspection robot comprising a plurality of payloads; a plurality of arms, wherein each of the plurality of arms is pivotally mounted to one of the plurality of payloads; a plurality of sleds, wherein each sled is mounted to one of the plurality of arms; a plurality of inspection sensors, each of the inspection sensors coupled to one of the plurality of sleds such that each sensor is operationally couplable to an inspection surface; and wherein the plurality of sleds are horizontally distributed on the inspection surface at selected horizontal positions, and wherein each of the arms is horizontally moveable relative to the corresponding payload.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: October 6, 2020
    Assignee: Gecko Robotics, Inc.
    Inventors: Mark Loosararian, Joshua Moore, Yizhu Gu, Kevin Low, Edward Bryner, Logan MacKenzie, Ian Miller, Alvin Chou, Todd Joslin
  • Publication number: 20200306969
    Abstract: System and methods for traversing an obstacle with an inspection robot are disclosed. An example system may include an inspection robot including an obstacle sensor to interrogate an inspection surface. The example may further include an obstacle sensory data circuit to interpret obstacle sensory data provided by the obstacle sensor, an obstacle processing circuit to determine refined obstacle data, and an obstacle notification circuit to generate and provide obstacle notification data to a user interface device. The example system may further include a user interface circuit to interpret a user request value from the user interface device, and to determine an obstacle response command value in response to the user request value; and an obstacle configuration circuit to provide the obstacle response command value to the inspection robot during the interrogating of the inspection surface.
    Type: Application
    Filed: May 8, 2020
    Publication date: October 1, 2020
    Inventors: Edward A. Bryner, Kevin Y. Low, Joshua D. Moore, Dillon R. Jourde, Mark J. Loosararian, Edwin H. Cho, Katherine Virginia Denner
  • Publication number: 20200310456
    Abstract: Systems and methods for an inspection robot having replaceable sensor sled portions are disclosed. An example system may include: an inspection robot including a plurality of payloads; a plurality of arms, each of the plurality of arms pivotally mounted to one of the plurality of payloads; and a plurality of sleds, each sled mounted to one of the plurality of arms. At least one of the plurality of sleds includes an upper portion coupled to a replaceable lower portion, where the replaceable lower portion includes a portion of a delay line for a sensor of the inspection robot.
    Type: Application
    Filed: June 10, 2020
    Publication date: October 1, 2020
    Inventors: Mark Loosararian, Joshua Moore, Yizhu Gu, Kevin Low, Edward Bryner, Logan MacKenzie, Ian Miller, Alvin Chou, Todd Joslin
  • Publication number: 20200264615
    Abstract: Systems, apparatus and methods for providing an interactive inspection map are disclosed. An example apparatus for providing an interactive inspection map of an inspection surface may include an inspection visualization circuit to provide an inspection map to a user device in response to inspection data provided by a plurality of sensors operationally coupled to an inspection robot traversing the inspection surface, wherein the inspection map corresponds to at least a portion of the inspection surface. The apparatus may further include a user interaction circuit to interpret a user focus value from the user device, and an action request circuit to determine an action in response to the user focus value. The inspection visualization circuit may further update the inspection map in response to the determined action.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 20, 2020
    Inventors: Edward A. Bryner, Kevin Y. Low, Joshua D. Moore, Dillon R. Jourde, Benjamin A. Guise, Alex C. Watt
  • Publication number: 20200262077
    Abstract: Inspection robots with a multi-function piston connecting a drive module to a central chassis and systems thereof are disclosed. An example inspection robot may include a center chassis coupled to a payload coupled to at least two inspection sensors. The inspection robot may further include a drive module coupled to the center chassis, the drive module having a drive wheel to engage an inspection surface and a drive piston mechanically interposed between the center chassis and the drive module. The example may further include wherein the drive piston in a first position couples the drive module to the center chassis at a minimum distance between and the drive piston in a second position couples the drive module to the center chassis at a maximum distance between. The example may further include wherein the drive module is independently rotatable relative to the center chassis.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 20, 2020
    Inventors: Edward A. Bryner, Kevin Y. Low, Joshua D. Moore, Dillon R. Jourde, Mark Cho, Francesco H. Trogu
  • Publication number: 20200262067
    Abstract: Systems and methods for configuring a robot for inspecting an inspection surface are disclosed. An example system may include an inspection robot having a payload coupled to at least two inspection sensors and a controller. The controller may include a route profile processing circuit to interpret route profile data for the inspection robot, a configuration determining circuit to determine one or more configurations for the inspection robot in response to the route profile data; and a configuration processing circuit to provide configuration data in response to the determined one or more configurations, the configuration data defining, at least in part, one or more inspection characteristics for the inspection robot.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 20, 2020
    Inventors: Edward A. Bryner, Kevin Y. Low, Joshua D. Moore, Dillon R. Jourde, Edwin H. Cho
  • Publication number: 20200262261
    Abstract: An inspection robot includes a robot body, at least two sensors, a drive module, a stability assist device and an actuator. The at least two sensors are positioned to interrogate an inspection surface and are communicatively coupled to the robot body. The drive module includes at least two wheels that engage the inspection surface. The drive module is coupled to the robot body. The stability assist device is coupled to at least one of the robot body or the drive module. The actuator is coupled to the stability assist device at a first end, and coupled to one of the drive module or the robot body at a second end. The actuator is structured to selectively move the stability assist device between a first position and a second position. The first position includes a stored position. The second position includes a deployed position.
    Type: Application
    Filed: March 9, 2020
    Publication date: August 20, 2020
    Inventors: Mark J. Loosararian, Michael A. Binger, Edward A. Bryner, Edwin H. Cho, Mark Cho, Alexander R. Cuti, Ignacio J. Cordova, Benjamin A. Guise, Dillon R. Jourde, Kevin Y. Low, Logan A. MacKenzie, Joshua D. Moore, Jeffrey J. Mrkonich, William J. Pridgen, Domenic P. Rodriguez, Francesco H. Trogu, Alex C. Watt, Yizhu Gu, Ian Miller, Todd Joslin, Katherine Virginia Denner, Michael Stephen Auda, Samuel Theodore Westenberg
  • Publication number: 20200262066
    Abstract: An inspection robot, and methods and a controller thereof are disclosed. An inspection robot may include an inspection chassis including a plurality of inspection sensors and coupled to at least one drive module to drive the robot over an inspection surface. The inspection robot may also include a controller including an inspection data circuit to interpret inspection base data, an inspection processing circuit to determine refined inspection data, and an inspection configuration circuit to determine an inspection response value in response to the refined inspection data. The controller may further include an inspection response circuit to, in response to the inspection response value, provide an inspection command value while the inspection robot is interrogating the inspection surface.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 20, 2020
    Inventors: Edward A. Bryner, Kevin Y. Low, Joshua D. Moore, Dillon R. Jourde, Benjamin A. Guise, Alex C. Watt, Logan A. MacKenzie
  • Publication number: 20200264614
    Abstract: Systems, apparatus and methods for providing an inspection map are disclosed. An apparatus for performing an inspection may include an inspection data circuit to interpret inspection data, a robot positioning circuit to interpret position data, and a processed data circuit to link the inspection data with the position data to determine position-based inspection data. The apparatus may further include a user interaction circuit to interpret an inspection visualization request for an inspection map and an inspection visualization circuit to determine the inspection map based on the position-based inspection data, and a provisioning circuit structured to provide the inspection map to a user device.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 20, 2020
    Inventors: Edward A. Bryner, Kevin Y. Low, Joshua D. Moore, Dillon R. Jourde, Benjamin A. Guise, Alex C. Watt, Logan A. MacKenzie, Ian Miller, Todd Joslin
  • Publication number: 20200262072
    Abstract: Systems, methods, and apparatus for tracking location of an inspection robot are disclosed. An example apparatus for tracking inspection data may include an inspection chassis having a plurality of inspection sensors configured to interrogate an inspection surface, a first drive module and a second drive module, both coupled to the inspection chassis. The first and second drive module may each include a passive encoder wheel and a non-contact sensor positioned in proximity to the passive encoder wheel, wherein the non-contact sensor provides a movement value corresponding to the first passive encoder wheel. An inspection position circuit may determine a relative position of the inspection chassis in response to the movement values from the first and second drive modules.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 20, 2020
    Inventors: Edward A. Bryner, Kevin Y. Low, Joshua D. Moore, Dillon R. Jourde, Edwin H. Cho, William J. Pridgen, Domenic P. Rodriguez
  • Publication number: 20200262052
    Abstract: An inspection robot, system and methods are disclosed. An inspection robot may include an inspection chassis and a drive module with magnetic wheels coupled to the inspection chassis. The drive module may further include a motor and a gear box located between the motor and a magnetic wheels. The gear box may include a flex spline cup which interacts with the ring gear, where the ring gear has fewer teeth than the flex spline cup.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 20, 2020
    Inventors: Edward A. Bryner, Kevin Y. Low, Joshua D. Moore, Dillon R. Jourde
  • Publication number: 20200254615
    Abstract: Systems, methods and apparatus for rapid development of an inspection scheme for an inspection robot are disclosed. An apparatus may include an inspection definition circuit to interpret an inspection description value, and a robot configuration circuit to determine an inspection robot configuration description in response to the inspection description value. The apparatus may further include a configuration implementation circuit, communicatively coupled to a configuration interface of an inspection robot, to provide at least a portion of the inspection robot configuration description to the configuration interface.
    Type: Application
    Filed: April 30, 2020
    Publication date: August 13, 2020
    Inventors: Edward A. Bryner, Kevin Y. Low, Joshua D. Moore, Dillon R. Jourde, Francesco H. Trogu, Jeffrey J. Mrkonich, William J. Pridgen, Domenic P. Rodriguez, Alex C. Watt, Michael Stephen Auda, Logan A. MacKenzie, Ian Miller, Samuel Theodore Westenberg, Katherine Virginia Denner
  • Patent number: 10739779
    Abstract: A system includes an inspection robot having a number of payloads, a number of arms mounted to the payloads, and a number of sleds mounted to the arms, where the sleds comprise an upper portion coupled to a replaceable lower portion, the replaceable lower portion having a bottom surface shaped to accommodate an inspection surface; and an inspection sensor coupled to the upper portion of the one of the plurality of sleds such that the sensor is operationally couplable to the inspection surface.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: August 11, 2020
    Assignee: Gecko Robotics, Inc.
    Inventors: Mark Loosararian, Joshua Moore, Yizhu Gu, Kevin Low, Edward Bryner, Logan MacKenzie, Ian Miller, Alvin Chou, Todd Joslin
  • Patent number: 10698412
    Abstract: A system includes an inspection robot having a number of payloads, a number of arms mounted to the payloads, and a number of sleds mounted to the arms. The system includes a number of sensors, each mounted to a corresponding sled, such that the sensor is operationally coupleable to an inspection surface in contact with a bottom surface of the corresponding sled. A couplant chamber is provided within at least two of the sleds, the couplant chamber between a transducer of a sensor and the inspection surface. The system includes a biasing member for each of the arms, where the biasing member provides a down force on the corresponding sled.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: June 30, 2020
    Assignee: Gecko Robotics, Inc.
    Inventors: Mark Loosararian, Joshua Moore, Yizhu Gu, Kevin Low, Edward Bryner, Logan MacKenzie, Ian Miller, Alvin Chou, Todd Joslin
  • Publication number: 20200159237
    Abstract: A system includes an inspection robot for performing an inspection on an inspection surface with an inspection robot, the apparatus comprising a position definition circuit structured to determine an inspection robot position on the inspection surface; a data positioning circuit structured to interpret inspection data, and to correlate the inspection data to the inspection robot position on the inspection surface; and wherein the data positioning circuit is further structured to determine position informed inspection data in response to the correlating of the inspection data with the inspection robot position, wherein the position informed inspection data comprises absolute position data.
    Type: Application
    Filed: November 18, 2019
    Publication date: May 21, 2020
    Inventors: Mark Loosararian, Joshua Moore, Yizhu Gu, Kevin Low, Edward Bryner, Logan MacKenzie, Ian Miller, Alvin Chou, Todd Joslin
  • Patent number: 10534365
    Abstract: A system includes an inspection robot having mounted sleds, and a number of sensors each mounted to a sled. A couplant chamber is disposed within at least two of the sleds, each couplant chamber between a transducer of the sensor and an inspection surface. Each couplant chamber includes a cone, the cone having a cone tip portion at an inspection surface end, and a sensor mounting end opposite the cone tip portion. A couplant entry for each couplant chamber is at a vertically upper side of the cone in the intended orientation of the inspection robot on the inspection surface.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: January 14, 2020
    Assignee: Gecko Robotics, Inc.
    Inventors: Mark Loosararian, Joshua Moore, Yizhu Gu, Kevin Low, Edward Bryner, Logan MacKenzie, Ian Miller, Alvin Chou, Todd Joslin
  • Patent number: 10481608
    Abstract: A system includes an inspection robot for performing an inspection on an inspection surface with ultrasonic and magnetic induction sensors, the apparatus comprising a position definition circuit structured to determine an inspection robot position on the inspection surface; a data positioning circuit structured to interpret inspection data, and to correlate the inspection data to the inspection robot position on the inspection surface; and wherein the data positioning circuit is further structured to determine position informed inspection data in response to the correlating of the inspection data with the inspection robot position.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: November 19, 2019
    Assignee: Gecko Robotics, Inc.
    Inventors: Mark Loosararian, Joshua Moore, Yizhu Gu, Kevin Low, Edward Bryner, Logan MacKenzie, Ian Miller, Alvin Chou, Todd Joslin
  • Publication number: 20190242728
    Abstract: An inspection apparatus and methods for inspecting horizontal tubes in an industrial environment are disclosed. The apparatus can include a drive module including a pair of wheels to engage a top tube of a vertically arranged layer of tubes, a telescoping pole, a sensor carriage assembly coupled to the telescoping pole, and a lowering mechanism operationally coupled to the telescoping pole to selectively extend or retract the telescoping pole providing a selected vertical position of the sensor carriage assembly.
    Type: Application
    Filed: April 17, 2019
    Publication date: August 8, 2019
    Inventors: Kevin Low, Edward Bryner, Logan MacKenzie, Joshua Moore, Michael S. Auda, Mark Cho, Edwin H. Cho
  • Publication number: 20180292838
    Abstract: A system includes an inspection robot comprising a plurality of sensor sleds; a plurality of ultra-sonic (UT) sensors; a couplant chamber mounted to each of the plurality of sleds, each couplant chamber comprising: a cone, the cone comprising a cone tip portion at an inspection surface end of the cone; a sensor mounting end opposite the cone tip portion; a couplant entry fluidly coupled to the cone at a position between the cone tip portion and the sensor mounting end; and wherein each of the UT sensors is mounted to the sensor mounting end of one of the couplant chambers.
    Type: Application
    Filed: May 25, 2018
    Publication date: October 11, 2018
    Inventors: Mark Loosararian, Joshua Moore, Yizhu Gu, Kevin Low, Edward Bryner, Logan MacKenzie, Ian Miller, Alvin Chou, Todd Joslin
  • Publication number: 20180284797
    Abstract: A system includes an inspection robot having mounted sleds, and a number of sensors each mounted to a sled. A couplant chamber is disposed within at least two of the sleds, each couplant chamber between a transducer of the sensor and an inspection surface. Each couplant chamber includes a cone, the cone having a cone tip portion at an inspection surface end, and a senor mounting end opposite the cone tip portion. A couplant entry for each couplant chamber is at a vertically upper side of the cone in the intended orientation of the inspection robot on the inspection surface.
    Type: Application
    Filed: June 5, 2018
    Publication date: October 4, 2018
    Inventors: Mark Loosararian, Joshua Moore, Yizhu Gu, Kevin Low, Edward Bryner, Logan MacKenzie, Ian Miller, Alvin Chou, Todd Joslin