Patents by Inventor Edward C. Cooney, III

Edward C. Cooney, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100263998
    Abstract: Vertical integrated MEMS switches, design structures and methods of fabricating such vertical switches is provided herein. The method of manufacturing a MEMS switch, includes forming at least two vertically extending vias in a wafer and filling the at least two vertically extending vias with a metal to form at least two vertically extending wires. The method further includes opening a void in the wafer from a bottom side such that at least one of the vertically extending wires is moveable within the void.
    Type: Application
    Filed: April 20, 2009
    Publication date: October 21, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Felix P. Anderson, Edward C. Cooney, III, Thomas L. Mcdevitt, Anthony K. Stamper
  • Patent number: 7741226
    Abstract: A method of optimally filling a through via within a through wafer via structure with a conductive metal such as, for example, W is provided. The inventive method includes providing a structure including a substrate having at least one aperture at least partially formed through the substrate. The at least one aperture of the structure has an aspect ratio of at least 20:1 or greater. Next, a refractory metal-containing liner such as, for example, Ti/TiN, is formed on bare sidewalls of the substrate within the at least one aperture. A conductive metal seed layer is then formed on the refractory metal-containing liner. In the invention, the conductive metal seed layer formed is enriched with silicon and has a grain size of about 5 nm or less. Next, a conductive metal nucleation layer is formed on the conductive metal seed layer. The conductive metal nucleation layer is also enriched with silicon and has a grain size of about 20 nm or greater.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: June 22, 2010
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Edward C. Cooney, III, Peter J. Lindgren, Dorreen J. Ossenkop, Cornelia K. Tsang
  • Patent number: 7655547
    Abstract: A method and structure for a single or dual damascene interconnect structure comprises forming wiring lines in a metallization layer over a substrate, shaping a laminated insulator stack above the metallization layer, patterning a hardmask over the laminated insulator stack, forming troughs in the hardmask, patterning the laminated insulator stack, forming vias in the patterned laminated insulator stack, creating sidewall spacers in the bottom portion of the vias, depositing an anti-reflective coating on the sidewall spacers, etching the troughs, removing the anti-reflective coating, depositing a metal layer in the troughs, vias, and sidewall spacers, and applying conductive material in the troughs and the vias. The laminated insulator stack comprises a dielectric layer further comprising oxide and polyarylene.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: February 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, Robert M. Geffken, Anthony K. Stamper
  • Publication number: 20090280643
    Abstract: A method of optimally filling a through via within a through wafer via structure with a conductive metal such as, for example, W is provided. The inventive method includes providing a structure including a substrate having at least one aperture at least partially formed through the substrate. The at least one aperture of the structure has an aspect ratio of at least 20:1 or greater. Next, a refractory metal-containing liner such as, for example, Ti/TiN, is formed on bare sidewalls of the substrate within the at least one aperture. A conductive metal seed layer is then formed on the refractory metal-containing liner. In the invention, the conductive metal seed layer formed is enriched with silicon and has a grain size of about 5 nm or less. Next, a conductive metal nucleation layer is formed on the conductive metal seed layer. The conductive metal nucleation layer is also enriched with silicon and has a grain size of about 20 nm or greater.
    Type: Application
    Filed: May 6, 2008
    Publication date: November 12, 2009
    Applicant: International Business Machines Corporation
    Inventors: Paul S. Andry, Edward C. Cooney, III, Peter J. Lindgren, Dorreen J. Ossenkop, Cornelia K. Tsang
  • Patent number: 7592685
    Abstract: Semiconductor structure includes an insulator layer having at least one interconnect feature and at least one gap formed in the insulator layer spanning more than a minimum spacing of interconnects.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: September 22, 2009
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Matthew E. Colburn, Edward C. Cooney, III, Timothy J. Dalton, John A. Fitzsimmons, Jeffrey P. Gambino, Elbert E. Huang, Michael W. Lane, Vincent J. McGahay, Lee M. Nicholson, Satyanarayana V. Nitta, Sampath Purushothaman, Sujatha Sankaran, Thomas M. Shaw, Andrew H. Simon, Anthony K. Stamper
  • Publication number: 20090212434
    Abstract: Processes for improving adhesion of films to semiconductor wafers and a semiconductor structure are provided. By implementing the processes of the invention, it is possible to significantly suppress defect creation, e.g., decrease particle generation, during wafer fabrication processes. More specifically, the processes described significantly reduce flaking of a TaN film from edges or extreme edges (bevel) of the wafer by effectively increasing the adhesion properties of the TaN film on the wafer. The method increasing a mol percent of nitride with respect to a total tantalum plus nitride to 25% or greater during a barrier layer fabrication process.
    Type: Application
    Filed: February 22, 2008
    Publication date: August 27, 2009
    Inventors: Felix P. Anderson, Steven P. Barkyoumb, Edward C. Cooney, III, Thomas L. McDevitt, William J. Murphy, David C. Strippe
  • Publication number: 20090206449
    Abstract: Stress-modified device structures, methods of fabricating such stress-modified device structures, and design structures for an integrated circuit. An electrical characteristic of semiconductor devices formed on a common substrate, such as the current gains of bipolar junction transistors, may be altered by modifying stresses in structures indirectly on or over, or otherwise indirectly coupled with, the semiconductor devices. The structures, which may be liners for contacts in a contact level of an interconnect, are physically spaced away from, and not in direct physical contact with, the respective semiconductor devices because at least one additional intervening material or structure is situated between the stress-imparting structures and the stress-modified devices.
    Type: Application
    Filed: February 14, 2008
    Publication date: August 20, 2009
    Inventors: Edward C. Cooney III, Mark Dupuis, William J. Murphy, Steven S. Williams
  • Patent number: 7541679
    Abstract: Methods and structures having pore-closing layers for closing exposed pores in a patterned porous low-k dielectric layer, and optionally a reactive liner on the low-k dielectric. A first reactant is absorbed or retained in exposed pores in the patterned dielectric layer and then a second reactant is introduced into openings such that it enters the exposed-pores, while first reactant molecules are simultaneously being outgassed. The second reactant reacts in-situ with the outgassed first reactant molecules at a mouth region of the exposed pores to form the pore-closing layer across the mouth region of exposed pores, while retaining a portion of each pore's porosity to maintain characteristics and properties of the porous low-k dielectric layer. Optionally, the first reactant may be adsorbed onto the low-k dielectric such that upon introduction of the second reactant Into the patterned dielectric openings, a reactive liner is also formed on the low-k dielectric.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: June 2, 2009
    Assignee: International Business Machines Corporation
    Inventors: Edward C Cooney, III, John A Fitzsimmons, Jeffrey P Gambino, Stephen E Luce, Thomas L McDevitt, Lee M Nicholson, Anthony K Stamper
  • Publication number: 20080293242
    Abstract: A method and structure for a single or dual damascene interconnect structure comprises forming wiring lines in a metallization layer over a substrate, shaping a laminated insulator stack above the metallization layer, patterning a hardmask over the laminated insulator stack, forming troughs in the hardmask, patterning the laminated insulator stack, forming vias in the patterned laminated insulator stack, creating sidewall spacers in the bottom portion of the vias, depositing an anti-reflective coating on the sidewall spacers, etching the troughs, removing the anti-reflective coating, depositing a metal layer in the troughs, vias, and sidewall spacers, and applying conductive material in the troughs and the vias. The laminated insulator stack comprises a dielectric layer further comprising oxide and polyarylene.
    Type: Application
    Filed: April 4, 2008
    Publication date: November 27, 2008
    Applicant: International Business Machiness Corporation
    Inventors: Edward C. Cooney, III, Robert M. Geffken, Anthony K. Stamper
  • Patent number: 7405147
    Abstract: A method for manufacturing a structure includes providing a structure having an insulator layer with at least one interconnect and forming a sub lithographic template mask on the insulator layer. A selective etching step is used for etching the insulator layer through the sub lithographic template mask to form sub lithographic features near the at least one interconnect. A supra lithographic blocking mask may also be utilized. In another aspect, the method includes forming pinch off sections of sub lithographic size formed in a capping layer on the insulator layer. A semiconductor structure includes an insulator layer having at least one interconnect feature and at least one column formed in the insulator layer. A plurality of sub lithographic features formed on a top portion of the insulator layer and communicating with the at least one column is also provided. The plurality of sub lithographic features have a cross section or diameter less than any of the at least one column.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: July 29, 2008
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Matthew E. Colburn, Edward C. Cooney, III, Timothy J. Dalton, John A. Fitzsimmons, Jeffrey P. Gambino, Elbert E. Huang, Michael W. Lane, Vincent J. McGahay, Lee M. Nicholson, Satyanarayana V. Nitta, Sampath Purushothaman, Sujatha Sankaran, Thomas M. Shaw, Andrew H. Simon, Anthony K. Stamper
  • Patent number: 7393777
    Abstract: A method and structure for a dual damascene interconnect structure comprises forming wiring lines in a metallization layer over a substrate, shaping a laminated insulator stack above the metallization layer, patterning a hardmask over the laminated insulator stack, forming troughs in the hardmask, creating sacrificial tungsten sidewall spacers in the troughs, patterning the laminated insulator stack, removing the sacrificial sidewall spacers, forming vias in the patterned laminated insulator stack, and depositing a metal liner and conductive material into the vias and troughs, wherein the laminated insulator stack comprises a dielectric layer further comprising oxide and polyarylene. The step of depositing prevents the laminated insulator stack from sputtering into the vias.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: July 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, Robert M. Geffken, Anthony K. Stamper
  • Patent number: 7381637
    Abstract: A method and structure for a single or dual damascene interconnect structure comprises forming wiring lines in a metallization layer over a substrate, shaping a laminated insulator stack above the metallization layer, patterning a hardmask over the laminated insulator stack, forming troughs in the hardmask, patterning the laminated insulator stack, forming vias in the patterned laminated insulator stack, creating sidewall spacers in the bottom portion of the vias, depositing an anti-reflective coating on the sidewall spacers, etching the troughs, removing the anti-reflective coating, depositing a metal layer in the troughs, vias, and sidewall spacers, and applying conductive material in the troughs and the vias. The laminated insulator stack comprises a dielectric layer further comprising oxide and polyarylene.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: June 3, 2008
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, Robert M. Geffken, Anthony K. Stamper
  • Patent number: 7327033
    Abstract: Improved mechanical and adhesive strength and resistance to breakage of copper integrated circuit interconnections is obtained by forming a copper alloy in a copper via/wiring connection in an integrated circuit while minimizing adverse electrical effects of the alloy by confining the alloy to an interfacial region of said via/wiring connection and not elsewhere by a barrier which reduces or substantially eliminates the thickness of alloy in the conduction path. The alloy location and composition are further stabilized by reaction of all available alloying material with copper, copper alloys or other metals and their alloys.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: February 5, 2008
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Edward C. Cooney, III, John A. Fitzsimmons, Jeffrey P. Gambino, Anthony K. Stamper
  • Patent number: 7303994
    Abstract: The present invention relates to a process for improved interfacial adhesion of dielectrics using patterned roughing. Improved adhesion strength between layers and substrates can be achieved through increasing the roughness of the interface between the materials. Roughness may including any disturbance of an otherwise generally smooth surface, such as grooves, indents, holes, trenches, and/or the like. Roughing on the interface may be achieved by depositing a material on a surface of the substrate to act as a mask and then using an etching process to induce the roughness. The material, acting as a mask, allows etching to occur on a fine, or sub-miniature, scale below the Scale achieved with a conventional photo mask and lithography to achieve the required pattern roughing. Another material is then deposited on the roughened surface of the substrate, filling in the roughing and adhering to the substrate.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: December 4, 2007
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, Vincent McGahay, Thomas M Shaw, Anthony K. Stamper, Matthew E. Colburn
  • Patent number: 7235487
    Abstract: A method and structure for reducing the corrosion of the copper seed layer during the fabrication process of a semiconductor structure. Before the structure (or the wafer containing the structure) exits the vacuum environment of the sputter tool, the structure is warmed up to a temperature above the water condensation temperature of the environment outside the sputter tool. As a result, water vapor would not condense on the structure when the structure exits the sputter tool, and therefore, corrosion of the seed layer by the water vapor is prevented. Alternatively, a protective layer resistant to water vapor can be formed on top of the seed layer before the structure exits the sputter tool environment. In yet another alternative embodiment, the seed layer can comprises a copper alloy (such as with aluminum) which grows a protective layer resistant to water vapor upon exposure to water vapor.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: June 26, 2007
    Assignee: International Business Machines Corporation
    Inventors: Steven P Barkyoumb, Jonathan D. Chapple-Sokol, Edward C. Cooney, III, Keith E. Downes, Thomas L. McDevitt, William J. Murphy
  • Patent number: 7045472
    Abstract: A method for selectively altering dielectric properties of a semi-conductor device. In an exemplary embodiment, the method includes applying energy to a local region of interest, the local region of interest including a thermally alterable dielectric such that said heating caused by the applied energy causes a dielectric constant of the thermally alterable dielectric to change.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: May 16, 2006
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, William T. Motsiff
  • Patent number: 7015150
    Abstract: Methods and structures having pore-closing layers for closing exposed pores in a patterned porous low-k dielectric layer, and optionally a reactive liner on the low-k dielectric. A first reactant is absorbed or retained in exposed pores in the patterned dielectric layer and then a second reactant is introduced into openings such that it enters the exposed pores, while first reactant molecules are simultaneously being outgassed. The second reactant reacts in-situ with the outgassed first reactant molecules at a mouth region of the exposed pores to form the pore-closing layer across the mouth region of exposed pores, while retaining a portion of each pore's porosity to maintain characteristics and properties of the porous low-k dielectric layer. Optionally, the first reactant may be adsorbed onto the low-k dielectric such that upon introduction of the second reactant into the patterned dielectric openings, a reactive liner is also formed on the low-k dielectric.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: March 21, 2006
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, John A. Fitzsimmons, Jeffrey P. Gambino, Stephen E. Luce, Thomas L. McDevitt, Lee M. Nicholson, Anthony K. Stamper
  • Patent number: 6982227
    Abstract: A method of reworking BEOL (back end of a processing line) metallization levels of damascene metallurgy comprises forming a plurality of BEOL metallization levels over a substrate, forming line and via portions in the BEOL metallization levels, selectively removing at least one of the BEOL metallization levels to expose the line and via portions, and replacing the removed BEOL metallization levels with at least one new BEOL metallization level, wherein the BEOL metallization levels comprise a first dielectric layer and a second dielectric layer, and wherein the first dielectric layer comprising a lower dielectric constant material than the second dielectric layer.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: January 3, 2006
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, Robert M. Geffken, Vincent J. McGahay, William T. Motsiff, Mark P. Murray, Amanda L. Piper, Anthony K. Stamper, David C. Thomas, Christy S. Tyberg, Elizabeth T. Webster
  • Patent number: 6888251
    Abstract: A method and structure for a single or dual damascene interconnect structure comprises forming wiring lines in a metallization layer over a substrate, shaping a laminated insulator stack above the metallization layer, patterning a hardmask over the laminated insulator stack, forming troughs in the hardmask, patterning the laminated insulator stack, forming vias in the patterned laminated insulator stack, creating sidewall spacers in the bottom portion of the vias, depositing an anti-reflective coating on the sidewall spacers, etching the troughs, removing the anti-reflective coating, depositing a metal layer in the troughs, vias, and sidewall spacers, and applying conductive material in the troughs and the vias. The laminated insulator stack comprises a dielectric layer further comprising oxide and polyarylene.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: May 3, 2005
    Assignee: International Business Machines Corporation
    Inventors: Edward C Cooney, III, Robert M Geffken, Anthony K Stamper
  • Patent number: 6846741
    Abstract: A method and structure for a dual damascene interconnect structure comprises forming wiring lines in a metallization layer over a substrate, shaping a laminated insulator stack above the metallization layer, patterning a hardmask over the laminated insulator stack, forming troughs in the hardmask, creating sacrificial tungsten sidewall spacers in the troughs, patterning the laminated insulator stack, removing the sacrificial sidewall spacers, forming vias in the patterned laminated insulator stack, and depositing a metal liner and conductive material into the vias and troughs, wherein the laminated insulator stack comprises a dielectric layer further comprising oxide and polyarylene. The step of depositing prevents the laminated insulator stack from sputtering into the vias.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: January 25, 2005
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, Robert M. Geffken, Anthony K. Stamper