Patents by Inventor Edward Chinchoy

Edward Chinchoy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230277842
    Abstract: Hemodynamic performance of a heart may be improved by determining, from a location associated with a diaphragm, an occurrence of a valid cardiac event; and then delivering asymptomatic electrical stimulation therapy directly to the diaphragm at termination of a diaphragmatic stimulation delay period that is timed relative to the occurrence of the valid cardiac event. The diaphragmatic stimulation delay period may be automatically established by sensing a plurality of cardiac events directly from a diaphragm; and for each of the sensed cardia events, determining whether the sensed cardiac event represents a valid cardiac event or a non-valid cardiac event. The diaphragmatic stimulation delay period is then calculated based on a plurality of sensed cardia events that are determined to be valid.
    Type: Application
    Filed: April 21, 2023
    Publication date: September 7, 2023
    Inventors: Peter T. BAUER, Edward CHINCHOY, Jay SNELL
  • Patent number: 11666757
    Abstract: Hemodynamic performance of a heart may be improved by determining, from a location associated with a diaphragm, an occurrence of a valid cardiac event; and then delivering asymptomatic electrical stimulation therapy directly to the diaphragm at termination of a diaphragmatic stimulation delay period that is timed relative to the occurrence of the valid cardiac event. The diaphragmatic stimulation delay period may be automatically established by sensing a plurality of cardiac events directly from a diaphragm; and for each of the sensed cardia events, determining whether the sensed cardiac event represents a valid cardiac event or a non-valid cardiac event. The diaphragmatic stimulation delay period is then calculated based on a plurality of sensed cardia events that are determined to be valid.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: June 6, 2023
    Assignee: VisCardia, Inc.
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell
  • Patent number: 11400286
    Abstract: A controller delivers electrical stimulation therapy to a diaphragm through the one or more electrodes, and obtains a signal indicative of a pressure within an intrathoracic cavity from a pressure measurement source. The electrical stimulation therapy is defined by stimulation parameters. The controller obtains at least one additional signal indicative of a pressure within an intrathoracic cavity by changing at least one of the stimulation parameters, and delivering an electrical stimulation therapy to the diaphragm in accordance with the changed one of the plurality of stimulation parameters. The controller repeats the process of obtaining additional signals indicative of pressure based on a changing stimulation parameter by scanning through a range of values for the changing stimulation parameter.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: August 2, 2022
    Assignee: VisCardia, Inc.
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell, Patricia A. Arand
  • Publication number: 20220001174
    Abstract: Hemodynamic performance of a heart may be improved by determining, from a location associated with a diaphragm, an occurrence of a valid cardiac event; and then delivering asymptomatic electrical stimulation therapy directly to the diaphragm at termination of a diaphragmatic stimulation delay period that is timed relative to the occurrence of the valid cardiac event. The diaphragmatic stimulation delay period may be automatically established by sensing a plurality of cardiac events directly from a diaphragm; and for each of the sensed cardia events, determining whether the sensed cardiac event represents a valid cardiac event or a non-valid cardiac event. The diaphragmatic stimulation delay period is then calculated based on a plurality of sensed cardia events that are determined to be valid.
    Type: Application
    Filed: September 16, 2021
    Publication date: January 6, 2022
    Inventors: Peter T. BAUER, Edward CHINCHOY, Jay SNELL
  • Patent number: 11147968
    Abstract: Hemodynamic performance of a heart may be improved by determining, from a location associated with a diaphragm, an occurrence of a valid cardiac event; and then delivering asymptomatic electrical stimulation therapy directly to the diaphragm at termination of a diaphragmatic stimulation delay period that is timed relative to the occurrence of the valid cardiac event. The diaphragmatic stimulation delay period may be automatically established by sensing a plurality of cardiac events directly from a diaphragm; and for each of the sensed cardia events, determining whether the sensed cardiac event represents a valid cardiac event or a non-valid cardiac event. The diaphragmatic stimulation delay period is then calculated based on a plurality of sensed cardia events that are determined to be valid.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: October 19, 2021
    Assignee: VisCardia, Inc.
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell
  • Publication number: 20200046971
    Abstract: A controller delivers electrical stimulation therapy to a diaphragm through the one or more electrodes, and obtains a signal indicative of a pressure within an intrathoracic cavity from a pressure measurement source. The electrical stimulation therapy is defined by stimulation parameters. The controller obtains at least one additional signal indicative of a pressure within an intrathoracic cavity by changing at least one of the stimulation parameters, and delivering an electrical stimulation therapy to the diaphragm in accordance with the changed one of the plurality of stimulation parameters. The controller repeats the process of obtaining additional signals indicative of pressure based on a changing stimulation parameter by scanning through a range of values for the changing stimulation parameter.
    Type: Application
    Filed: October 17, 2019
    Publication date: February 13, 2020
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell, Patricia A. Arand
  • Patent number: 10537735
    Abstract: A controller detects a cyclic cardiac event of the patient based on a signal obtained from one or more electrodes configured for placement on or near a diaphragm, and delivers an electrical stimulation therapy to a diaphragm of the patient through the one or more electrodes. The delivery of electrical stimulation therapy is timed to the detection of the cyclic cardiac event, and the electrical stimulation therapy is defined by stimulation parameters. The controller monitors a pressure associated with the intrathoracic cavity of the patient based on a signal provided by a pressure measurement source configured to provide a signal indicative of a pressure within an intrathoracic cavity, to determine whether an adjustment of one or more of the stimulation parameters is warranted.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: January 21, 2020
    Assignee: VisCardia, Inc.
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell
  • Patent number: 10493271
    Abstract: A controller delivers electrical stimulation therapy to a diaphragm through the one or more electrodes, and obtains a signal indicative of a pressure within an intrathoracic cavity from a pressure measurement source. The electrical stimulation therapy is defined by stimulation parameters. The controller obtains at least one additional signal indicative of a pressure within an intrathoracic cavity by changing at least one of the stimulation parameters, and delivering an electrical stimulation therapy to the diaphragm in accordance with the changed one of the plurality of stimulation parameters. The controller repeats the process of obtaining additional signals indicative of pressure based on a changing stimulation parameter by scanning through a range of values for the changing stimulation parameter.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: December 3, 2019
    Assignee: VisCardia, Inc.
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell, Patricia A. Arand
  • Publication number: 20190255322
    Abstract: Hemodynamic performance of a heart may be improved by determining, from a location associated with a diaphragm, an occurrence of a valid cardiac event; and then delivering asymptomatic electrical stimulation therapy directly to the diaphragm at termination of a diaphragmatic stimulation delay period that is timed relative to the occurrence of the valid cardiac event. The diaphragmatic stimulation delay period may be automatically established by sensing a plurality of cardiac events directly from a diaphragm; and for each of the sensed cardia events, determining whether the sensed cardiac event represents a valid cardiac event or a non-valid cardiac event. The diaphragmatic stimulation delay period is then calculated based on a plurality of sensed cardia events that are determined to be valid.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Inventors: Peter T. BAUER, Edward CHINCHOY, Jay SNELL
  • Patent number: 10369361
    Abstract: A lead for placement on a diaphragm includes a sensor assembly, a connector, and a lead body. The sensor assembly includes a housing having a first end surface and a second end surface opposite the first end surface. The first end surface is intended to contact the diaphragm. The sensor assembly includes at least one fixation structure also associated with the first end surface. The fixation structure is configured to preserve the hermetic integrity of the intrathoracic cavity. The fixation structure may extend through the diaphragm and transition to a state that forms a seal between itself and tissue of the diaphragm. Alternatively, the fixation structure may surround the sensor assembly and form a seal between itself and the surface of the diaphragm.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: August 6, 2019
    Assignee: VisCardia, Inc.
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell
  • Patent number: 10335592
    Abstract: Hemodynamic performance of a heart may be improved by determining, from a location associated with a diaphragm, an occurrence of a valid cardiac event; and then delivering asymptomatic electrical stimulation therapy directly to the diaphragm at termination of a diaphragmatic stimulation delay period that is timed relative to the occurrence of the valid cardiac event. The diaphragmatic stimulation delay period may be automatically established by sensing a plurality of cardiac events directly from a diaphragm; and for each of the sensed cardia events, determining whether the sensed cardiac event represents a valid cardiac event or a non-valid cardiac event. The diaphragmatic stimulation delay period is then calculated based on a plurality of sensed cardia events that are determined to be valid.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: July 2, 2019
    Assignee: VisCardia, Inc.
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell
  • Publication number: 20170312507
    Abstract: A lead for placement on a diaphragm includes a sensor assembly, a connector, and a lead body. The sensor assembly includes a housing having a first end surface and a second end surface opposite the first end surface. The first end surface is intended to contact the diaphragm. The sensor assembly includes at least one fixation structure also associated with the first end surface. The fixation structure is configured to preserve the hermetic integrity of the intrathoracic cavity. The fixation structure may extend through the diaphragm and transition to a state that forms a seal between itself and tissue of the diaphragm. Alternatively, the fixation structure may surround the sensor assembly and form a seal between itself and the surface of the diaphragm.
    Type: Application
    Filed: April 26, 2017
    Publication date: November 2, 2017
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell
  • Publication number: 20170312508
    Abstract: A controller delivers electrical stimulation therapy to a diaphragm through the one or more electrodes, and obtains a signal indicative of a pressure within an intrathoracic cavity from a pressure measurement source. The electrical stimulation therapy is defined by stimulation parameters. The controller obtains at least one additional signal indicative of a pressure within an intrathoracic cavity by changing at least one of the stimulation parameters, and delivering an electrical stimulation therapy to the diaphragm in accordance with the changed one of the plurality of stimulation parameters. The controller repeats the process of obtaining additional signals indicative of pressure based on a changing stimulation parameter by scanning through a range of values for the changing stimulation parameter.
    Type: Application
    Filed: April 26, 2017
    Publication date: November 2, 2017
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell, Patricia A. Arand
  • Publication number: 20170312509
    Abstract: A controller detects a cyclic cardiac event of the patient based on a signal obtained from one or more electrodes configured for placement on or near a diaphragm, and delivers an electrical stimulation therapy to a diaphragm of the patient through the one or more electrodes. The delivery of electrical stimulation therapy is timed to the detection of the cyclic cardiac event, and the electrical stimulation therapy is defined by stimulation parameters. The controller monitors a pressure associated with the intrathoracic cavity of the patient based on a signal provided by a pressure measurement source configured to provide a signal indicative of a pressure within an intrathoracic cavity, to determine whether an adjustment of one or more of the stimulation parameters is warranted.
    Type: Application
    Filed: April 26, 2017
    Publication date: November 2, 2017
    Inventors: Peter T. Bauer, Edward Chinchoy, Jay Snell
  • Publication number: 20170021166
    Abstract: Hemodynamic performance of a heart may be improved by determining, from a location associated with a diaphragm, an occurrence of a valid cardiac event; and then delivering asymptomatic electrical stimulation therapy directly to the diaphragm at termination of a diaphragmatic stimulation delay period that is timed relative to the occurrence of the valid cardiac event. The diaphragmatic stimulation delay period may be automatically established by sensing a plurality of cardiac events directly from a diaphragm; and for each of the sensed cardia events, determining whether the sensed cardiac event represents a valid cardiac event or a non-valid cardiac event. The diaphragmatic stimulation delay period is then calculated based on a plurality of sensed cardia events that are determined to be valid.
    Type: Application
    Filed: October 7, 2016
    Publication date: January 26, 2017
    Inventors: Peter T. BAUER, Edward CHINCHOY, Jay SNELL
  • Patent number: 8738131
    Abstract: A system and method for monitoring at least one chamber of a heart (e.g., a left ventricular chamber) during delivery of extrasystolic stimulation to determine if the desired extra-systole (i.e., ventricular mechanical capture following refractory period expiration) occurs. The system includes an implantable or external cardiac stimulation device in association with a set of leads such as epicardial, endocardial, and/or coronary sinus leads equipped with motion sensor(s). The device receives and processes acceleration sensor signals to determine a signal characteristic indicative of chamber capture resulting from one or more pacing stimulus delivered closely following expiration of the refractory period.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: May 27, 2014
    Assignee: Medtronic, Inc.
    Inventors: Edward Chinchoy, Michael F. Hess
  • Patent number: 8398609
    Abstract: During diastolic coronary perfusion, blood perfuses through the heart via the coronary arteries. Delivery of a therapeutic and/or diagnostic agent to the heart during diastolic coronary perfusion allows the therapeutic and/or diagnostic agent to efficiently perfuse through the heart. A medical device according to the invention detects closure of the aortic valve of a heart, and initiates delivery of a therapeutic and/or diagnostic agent upon detection of aortic valve closure. The medical device detects aortic valve closure by processing a signal. Exemplary signals used by the medical device to detect aortic valve closure include left or right ventricular accelerometer signals, left or right ventricular flow signals, left or right ventricular pressure signals, aortic pressure signals, pulse pressure signals, systemic arterial pressure signals, electrogram signals, and phonocardiogram signals.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: March 19, 2013
    Assignee: Medtronic, Inc.
    Inventor: Edward Chinchoy
  • Patent number: 8150513
    Abstract: A system and method for monitoring left ventricular (LV) lateral wall motion and for optimizing cardiac pacing intervals based on left ventricular lateral wall motion is provided. The system includes an implantable or external cardiac stimulation device in association with a set of leads including a left ventricular epicardial or coronary sinus lead equipped with a motion sensor electromechanically coupled to the lateral wall of the left ventricle. The device receives and processes wall motion sensor signals to determine a signal characteristic indicative of systolic LV lateral wall motion or acceleration. An automatic pacing interval optimization method evaluates the LV lateral wall motion during varying pacing interval settings, including atrial-ventricular intervals and inter-ventricular intervals and selects the pacing interval setting(s) that correspond to LV lateral wall motion associated with improved cardiac synchrony and hemodynamic performance.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: April 3, 2012
    Assignee: Medtronic, Inc.
    Inventor: Edward Chinchoy
  • Publication number: 20110288408
    Abstract: During diastolic coronary perfusion, blood perfuses through the heart via the coronary arteries. Delivery of a therapeutic and/or diagnostic agent to the heart during diastolic coronary perfusion allows the therapeutic and/or diagnostic agent to efficiently perfuse through the heart. A medical device according to the invention detects closure of the aortic valve of a heart, and initiates delivery of a therapeutic and/or diagnostic agent upon detection of aortic valve closure. The medical device detects aortic valve closure by processing a signal.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 24, 2011
    Applicant: Medtronic, Inc.
    Inventor: Edward Chinchoy
  • Patent number: 7951129
    Abstract: During diastolic coronary perfusion, blood perfuses through the heart via the coronary arteries. Delivery of a therapeutic and/or diagnostic agent to the heart during diastolic coronary perfusion allows the therapeutic and/or diagnostic agent to efficiently perfuse through the heart. A medical device according to the invention detects closure of the aortic valve of a heart, and initiates delivery of a therapeutic and/or diagnostic agent upon detection of aortic valve closure. The medical device detects aortic valve closure by processing a signal.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: May 31, 2011
    Assignee: Medtronic, Inc.
    Inventor: Edward Chinchoy