Patents by Inventor Edward Chinchoy

Edward Chinchoy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6871088
    Abstract: A method and apparatus for optimizing cardiac resynchronization therapy are provided. An iterative optimization procedure is performed to test the systolic hemodynamic effects of varying A-V-V timing schemes. The hemodynamic effect is assessed based on a surrogate of stroke volume. The stroke volume surrogate is derived from a sensor signal proportional to the blood pressure in the aorta or a major artery. The A-V-V timing scheme corresponding to the greatest stroke volume, as indicated by the stroke volume surrogate, is identified and automatically programmed to maintain optimal A-V-V settings acutely and chronically.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: March 22, 2005
    Assignee: Medtronic, Inc.
    Inventor: Edward Chinchoy
  • Publication number: 20050043616
    Abstract: During diastolic coronary perfusion, blood perfuses through the heart via the coronary arteries. Delivery of a therapeutic and/or diagnostic agent to the heart during diastolic coronary perfusion allows the therapeutic and/or diagnostic agent to efficiently perfuse through the heart. A medical device according to the invention detects closure of the aortic valve of a heart, and initiates delivery of a therapeutic and/or diagnostic agent upon detection of aortic valve closure. The medical device detects aortic valve closure by processing a signal.
    Type: Application
    Filed: August 7, 2003
    Publication date: February 24, 2005
    Inventor: Edward Chinchoy
  • Publication number: 20050038481
    Abstract: An implantable medical device evaluates ventricular synchrony by determining a phase angle between at least two sensor signals that reflect mechanical contraction of the ventricles. In exemplary embodiments, two intracardiac impedance signals associated with the right and left ventricles, respectively, with two points within either of the left and right ventricles, or with both the left and right ventricles relative to a reference point, are processed. In such embodiments, fundamental frequency phases of each of the impedance signals may be compared to determine the phase angle between the signals. In some embodiments, the signals are used to dynamically adjust one or more timing intervals, such as a V-V timing interval, for delivery of cardiac resynchronization therapy (CRT) pacing. In such embodiments, the one or more timing intervals are periodically adjusted to reduce or possibly eliminate ventricular dysynchrony as indicated by the phase angle between the sensor signals.
    Type: Application
    Filed: August 11, 2003
    Publication date: February 17, 2005
    Inventors: Edward Chinchoy, D. Deno, Yong Cho
  • Publication number: 20040186524
    Abstract: A method and apparatus for optimizing cardiac resynchronization therapy are provided. An iterative optimization procedure is performed to test the systolic hemodynamic effects of varying A-V-V timing schemes. The hemodynamic effect is assessed based on a surrogate of stroke volume. The stroke volume surrogate is derived from a sensor signal proportional to the blood pressure in the aorta or a major artery. The A-V-V timing scheme corresponding to the greatest stroke volume, as indicated by the stroke volume surrogate, is identified and automatically programmed to maintain optimal A-V-V settings acutely and chronically.
    Type: Application
    Filed: March 20, 2003
    Publication date: September 23, 2004
    Inventor: Edward Chinchoy
  • Publication number: 20040172078
    Abstract: A system and method for monitoring left ventricular (LV) lateral wall motion and for optimizing cardiac pacing intervals based on left ventricular lateral wall motion is provided. The system includes an implantable or external cardiac stimulation device in association with a set of leads including a left ventricular epicardial or coronary sinus lead equipped with a motion sensor electromechanically coupled to the lateral wall of the left ventricle. The device receives and processes wall motion sensor signals to determine a signal characteristic indicative of systolic LV lateral wall motion or acceleration. An automatic pacing interval optimization method evaluates the LV lateral wall motion during varying pacing interval settings, including atrial-ventricular intervals and inter-ventricular intervals and selects the pacing interval setting(s) that correspond to LV lateral wall motion associated with improved cardiac synchrony and hemodynamic performance.
    Type: Application
    Filed: February 28, 2003
    Publication date: September 2, 2004
    Applicant: Medtronic, Inc.
    Inventor: Edward Chinchoy
  • Publication number: 20040172077
    Abstract: A method and apparatus for determining a metric of cardiac ventricular synchronization and optimizing a cardiac therapy based on the ventricular synchronization metric are provided. A ventricular synchronization metric is determined by: monitoring right and left ventricular pressure; plotting right ventricular pressure as a function of left ventricular pressure to form an RVP-LVP loop; and integrating with respect to direction to determine an area of the RVP-LVP loop which, according to one convention, is mathematically negative during left ventricular led pressure development and is mathematically positive during right ventricular led pressure development. Timing parameters used to control the delivery of cardiac resynchronization therapy or ventricular assist device therapy are adjusted as needed according to the ventricular synchronization metric.
    Type: Application
    Filed: February 28, 2003
    Publication date: September 2, 2004
    Applicant: Medtronic, Inc.
    Inventor: Edward Chinchoy
  • Publication number: 20040172079
    Abstract: A system and method for monitoring left ventricular cardiac contractility and for optimizing a cardiac therapy based on left ventricular lateral wall acceleration (LVA) are provided. The system includes an implantable or external cardiac stimulation device in association with a set of leads including a left ventricular epicardial or coronary sinus lead equipped with an acceleration sensor. The device receives and processes acceleration sensor signals to determine a signal characteristic indicative of LVA during isovolumic contraction. A therapy optimization method evaluates the LVA during varying therapy settings and selects the setting(s) that correspond to a maximum LVA during isovolumic contraction. In one embodiment, the optimal inter-ventricular pacing interval for use in cardiac resynchronization therapy is determined as the interval corresponding to the highest amplitude of the first LVA peak during isovolumic contraction.
    Type: Application
    Filed: February 28, 2003
    Publication date: September 2, 2004
    Applicant: Medtronic, Inc.
    Inventor: Edward Chinchoy