Patents by Inventor Edward F. Smith

Edward F. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11311870
    Abstract: A process for reducing the loss of catalyst activity of a Ziegler-Natta catalyst is provided. The process includes preparing a Ziegler-Natta (ZN) catalyst by contacting the ZN catalyst with at least one aluminum alkyl compound to produce a reduced ZN catalyst and storing and/or transporting the reduced ZN catalyst for at least 20 days at a temperature of 25° C. or less. The reduced ZN catalyst may be used for polymerizing polyolefin polymers.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: April 26, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Edward F. Smith, George A. Vaughan, Michael Awe, James R. Sollen, Ronald N. Cooke, Sateesh K. Rajput, Ahmed H. Ali
  • Publication number: 20210327614
    Abstract: A combination of materials and processing parameters have been developed for hermetic seals for electrical feedthroughs in high performance applications. A glass-ceramic forms a hermetic seal between a stainless steel shell and a platinum-nickel-based (Pt—Ni) pin alloy for electrical feedthroughs. The glass-ceramic is processed to develop a coefficient of thermal expansion (CTE) slightly higher than the pin alloy but lower than the stainless steel. The seal system employing the new processing conditions and Pt—Ni-based pin alloy alleviates several problems encountered in previous seal systems and improves the hermetic connector performance.
    Type: Application
    Filed: April 12, 2021
    Publication date: October 21, 2021
    Inventors: Donald F. Susan, Zahra Ghanbari, Steve Xunhu Dai, Brenton Elisberg, Edward F. Smith, III, Patrick K. Bowen
  • Patent number: 11117979
    Abstract: Processes and apparatus for preparing bimodal polymers are provided. In some embodiments, processes include introducing a monomer, a first diluent, a catalyst, hydrogen, at a first hydrogen concentration, and optional comonomer, to a first loop reactor to produce, under polymerization conditions, a first slurry of polymer solids. Processes may also include continuously discharging the first slurry of polymer solids from the loop reactor as a first polymerization effluent to a first flash tank; separating the first polymerization effluent in the first flash tank to provide a first concentrated polymer slurry with significantly lower hydrogen concentration; and transferring the first concentrated polymer slurry from the flash tank to a re-slurry mixer. Processes may further include introducing a re-slurry mixer diluent to the first concentrated polymer slurry to form a second concentrated polymer slurry in the re-slurry mixer that can be pumped to a second slurry loop reactor.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: September 14, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith W. Trapp, Scott T. Roger, James A. Kendrick, Edward F. Smith
  • Patent number: 11041228
    Abstract: Palladium-based ternary or higher alloys include palladium at about 45-55 wt %, copper about 32-42 wt %, silver at about 8-15 wt %, rhenium at about 0-5 wt %, and optionally one or more modifying elements at up to 1.0 wt %. The alloys are age-hardenable, provide hardness in excess of 350 HK (Knoop, 100 g load), have electrical conductivities above 19.5% IACS (International Annealed Copper Standard), have an elevated temperature strength above 100 ksi at temperatures up to 480° F. (250° C.), and remain ductile (tensile elongation>2%) in their fully age-hardened condition. The alloys may be used in static and moveable electrical contact and probe applications.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: June 22, 2021
    Assignee: Deringer-Ney, Inc.
    Inventors: Arthur S. Klein, Edward F. Smith, III, Srinath Viswanathan
  • Publication number: 20210079125
    Abstract: Processes and apparatus for preparing bimodal polymers are provided. In some embodiments, processes include introducing a monomer, a first diluent, a catalyst, hydrogen, at a first hydrogen concentration, and optional comonomer, to a first loop reactor to produce, under polymerization conditions, a first slurry of polymer solids. Processes may also include continuously discharging the first slurry of polymer solids from the loop reactor as a first polymerization effluent to a first flash tank; separating the first polymerization effluent in the first flash tank to provide a first concentrated polymer slurry with significantly lower hydrogen concentration; and transferring the first concentrated polymer slurry from the flash tank to a re-slurry mixer. Processes may further include introducing a re-slurry mixer diluent to the first concentrated polymer slurry to form a second concentrated polymer slurry in the re-slurry mixer that can be pumped to a second slurry loop reactor.
    Type: Application
    Filed: August 20, 2020
    Publication date: March 18, 2021
    Inventors: Keith W. Trapp, Scott T. Roger, James A. Kendrick, Edward F. Smith
  • Publication number: 20200071438
    Abstract: A process for preparing a catalyst system including contacting one or more catalysts having a Group 3 through Group 12 metal atom or lanthanide metal atom with a methylalumoxane and one or more support material compositions to a concentration of methylalumoxane of about 4 mmol to about 15 mmol aluminum per gram of support material is provided. The support material composition may have a macroporosity of from about 0.18 cc/g to about 0.50 cc/g. In other embodiments, a process for polymerizing at least one olefin to produce a polyolefin composition including contacting one or more olefins with the aforementioned catalyst system is also provide.
    Type: Application
    Filed: February 28, 2018
    Publication date: March 5, 2020
    Inventors: Corrine L. Brandl, Fred D. Ehrman, Edward F. Smith, Chi-I Kuo
  • Publication number: 20200055966
    Abstract: Embodiments of an invention disclosed herein relate to a process for adjusting one or more of the high load melt index (I21.6), weight average molecular weight (Mw), and molecular weight distribution (Mw/Mn) of one or more of polyolefin polymers during a polymerization reaction or adjusting the catalyst activity of the polymerization reaction, the process includes a) pre-contacting at least one chromium-containing catalyst with at least one aluminum alkyl to form a catalyst mixture outside of a polymerization reactor; b) passing the catalyst mixture to the polymerization reactor; c) contacting the catalyst mixture with one or more monomers under polymerizable conditions to form the one or more of polyolefin polymers; and d) recovering the one or more of polyolefin polymers.
    Type: Application
    Filed: June 19, 2017
    Publication date: February 20, 2020
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Zerong LIN, Edward F. SMITH, Keith W. TRAPP
  • Publication number: 20200030785
    Abstract: A process for reducing the loss of catalyst activity of a Ziegler-Natta catalyst is provided. The process includes preparing a Ziegler-Natta (ZN) catalyst by contacting the ZN catalyst with at least one aluminum alkyl compound to produce a reduced ZN catalyst and storing and/or transporting the reduced ZN catalyst for at least 20 days at a temperature of 25° C. or less. The reduced ZN catalyst may be used for polymerizing polyolefin polymers.
    Type: Application
    Filed: December 13, 2017
    Publication date: January 30, 2020
    Inventors: Edward F. Smith, George A. Vaughan, Michael Awe, James R. Sollen, Ronald N. Cooke, Sateesh K. Rajput, Ahmed H. Ali
  • Publication number: 20190330713
    Abstract: Palladium-based ternary or higher alloys include palladium at about 45-55 wt %, copper about 32-42 wt %, silver at about 8-15 wt %, rhenium at about 0-5 wt %, and optionally one or more modifying elements at up to 1.0 wt %. The alloys are age-hardenable, provide hardness in excess of 350 HK (Knoop, 100 g load), have electrical conductivities above 19.5% IACS (International Annealed Copper Standard), have an elevated temperature strength above 100 ksi at temperatures up to 480° F. (250° C.), and remain ductile (tensile elongation>2%) in their fully age-hardened condition. The alloys may be used in static and moveable electrical contact and probe applications.
    Type: Application
    Filed: July 11, 2019
    Publication date: October 31, 2019
    Inventors: Arthur S. Klein, Edward F. Smith, III, Srinath Viswanathan
  • Patent number: 10385424
    Abstract: Palladium-based ternary or higher alloys include palladium at about 45-55 wt %, copper about 32-42 wt %, silver at about 8-15 wt %, rhenium at about 0-5 wt %, and optionally one or more modifying elements at up to 1.0 wt %. The alloys are age-hardenable, provide hardness in excess of 350 HK (Knoop, 100 g load), have electrical conductivities above 19.5% IACS (International Annealed Copper Standard), have an elevated temperature strength above 100 ksi at temperatures up to 480° F. (250° C.), and remain ductile (tensile elongation >2%) in their fully age-hardened condition. The alloys may be used in static and moveable electrical contact and probe applications.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: August 20, 2019
    Assignee: Deringer-Ney, Inc.
    Inventors: Arthur S. Klein, Edward F. Smith, III, Srinath Viswanathan
  • Patent number: 10343987
    Abstract: A process and apparatus for oxidizing thiol compounds from an alkaline stream. The process includes passing a thiol rich alkaline stream and an oxygen containing gas to a low pressure oxidizing zone to oxidize at least a portion of the thiol compounds to disulfide compounds. A liquid stream comprising the alkali containing the disulfide compounds is passed through a pump to increase the pressure and form a pressurized alkaline stream. The pressurized alkaline stream and a sulfur lean liquid light hydrocarbon stream are introduced to a high pressure disulfide separation vessel to form a sulfur lean alkaline stream and a sulfur rich liquid light hydrocarbon stream.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: July 9, 2019
    Assignee: UOP LLC
    Inventors: Luigi Laricchia, Edward F. Smith, Jonathan A. Tertel
  • Publication number: 20180201575
    Abstract: A process and apparatus for oxidizing thiol compounds from an alkaline stream. The process includes passing a thiol rich alkaline stream and an oxygen containing gas to a low pressure oxidizing zone to oxidize at least a portion of the thiol compounds to disulfide compounds. A liquid stream comprising the alkali containing the disulfide compounds is passed through a pump to increase the pressure and form a pressurized alkaline stream. The pressurized alkaline stream and a sulfur lean liquid light hydrocarbon stream are introduced to a high pressure disulfide separation vessel to form a sulfur lean alkaline stream and a sulfur rich liquid light hydrocarbon stream.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 19, 2018
    Inventors: Luigi Laricchia, Edward F. Smith, Jonathan A. Tertel
  • Publication number: 20170218481
    Abstract: Palladium-based ternary or higher alloys include palladium at about 45-55 wt %, copper about 32-42 wt %, silver at about 8-15 wt %, rhenium at about 0-5 wt %, and optionally one or more modifying elements at up to 1.0 wt %. The alloys are age-hardenable, provide hardness in excess of 350 HK (Knoop, 100 g load), have electrical conductivities above 19.5% IACS (International Annealed Copper Standard), have an elevated temperature strength above 100 ksi at temperatures up to 480° F. (250° C.), and remain ductile (tensile elongation >2%) in their fully age-hardened condition. The alloys may be used in static and moveable electrical contact and probe applications.
    Type: Application
    Filed: January 29, 2016
    Publication date: August 3, 2017
    Inventors: Arthur S. Klein, Edward F. Smith, III, Srinath Viswanathan
  • Patent number: 9481844
    Abstract: A process and an apparatus for reducing the diolefin and oxygenate content of liquefied petroleum gas are disclosed. A first conduit is in fluid communication with a liquefied hydrocarbon source and a vessel. The vessel includes a solid adsorbent disposed on a support. The adsorbent is suitable for adsorbing diolefins and oxygenates. A second conduit is in fluid communication with the vessel for receiving the liquefied hydrocarbons of reduced diolefin and oxygenate content from the vessel. A steam inlet conduit is in fluid communication with a steam source and the vessel for treating the solid adsorbent containing adsorbed diolefins and oxygenates with steam to desorb the diolefins and oxygenates from the solid adsorbent. An amine absorber unit for reducing the hydrogen disulfide content of the liquefied hydrocarbon can be in fluid communication with the vessel.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: November 1, 2016
    Assignee: UOP LLC
    Inventors: Edward F. Smith, Erick D. Gamas-Castellanos
  • Patent number: 9234262
    Abstract: Ultra-low magnetic susceptibility, biocompatible palladium-tin, palladium-aluminum, and palladium-tantalum alloys include at least 75 at % palladium, between about 3 and 20 at % tin, aluminum, or tantalum, respectively, and one or more other additives chosen from niobium, tungsten, molybdenum, zirconium, titanium, tin for non-palladium-tin alloys, aluminum for non-palladium-aluminum alloys, or tantalum for non-palladium-tantalum alloys, up to about 22 at % total.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: January 12, 2016
    Assignee: DERINGER-NEY, INC.
    Inventors: Arthur S. Klein, Edward F. Smith, III, Peter Hale
  • Publication number: 20150300869
    Abstract: Apparatuses and methods for fuel level sensing use a rotatable housing configured to rotate about an axis based on a fuel level. Within the rotatable housing is a roller ball sensor assembly including a resistive trace having a plurality of portions, a conductive trace and a conductive element. The roller ball sensor assembly is configured to provide a resistance indicative of a rotation of the rotatable housing about the axis by using the conductive element to electrically couple a portion of the plurality of portions corresponding to the resistance to the conductive trace.
    Type: Application
    Filed: April 17, 2014
    Publication date: October 22, 2015
    Inventors: Arthur S. Klein, Edward F. Smith, III, Garth W. Boyd
  • Publication number: 20150158797
    Abstract: A process and an apparatus for reducing the diolefin and oxygenate content of liquefied petroleum gas are disclosed. A first conduit is in fluid communication with a liquefied hydrocarbon source and a vessel. The vessel includes a solid adsorbent disposed on a support. The adsorbent is suitable for adsorbing diolefins and oxygenates. A second conduit is in fluid communication with the vessel for receiving the liquefied hydrocarbons of reduced diolefin and oxygenate content from the vessel. A steam inlet conduit is in fluid communication with a steam source and the vessel for treating the solid adsorbent containing adsorbed diolefins and oxygenates with steam to desorb the diolefins and oxygenates from the solid adsorbent. An amine absorber unit for reducing the hydrogen disulfide content of the liquefied hydrocarbon can be in fluid communication with the vessel.
    Type: Application
    Filed: December 9, 2013
    Publication date: June 11, 2015
    Applicant: UOP LLC
    Inventors: Edward F. Smith, Erick D. Gamas-Castellanos
  • Patent number: 8845959
    Abstract: Alloys and dental copings or abutments formed of alloys include 50-60 wt % gold, 5-14 wt % platinum, 0.1-3.0 wt % iridium and the remainder palladium. Other alloys and dental copings or abutments formed of alloys include 58 wt % gold, 10 wt % platinum, 1.0 wt % iridium, and 31 wt % palladium. The alloys are capable of withstanding temperature profiles during casting and multiple high temperature exposures of porcelain firing without excessive softening. The alloys also exhibit advantageous shear strain properties giving the alloys improved manufacturability characteristics.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: September 30, 2014
    Assignee: Deringer-Ney, Inc.
    Inventors: Peter Hale, Edward F. Smith, III, Arthur S. Klein
  • Patent number: 8206175
    Abstract: During implant of an implantable medical device, implanted cables or leads are inserted to a connector block. An insertion indicator provides the user with a visual indication the cables or leads have been correctly inserted into the connector block, which enables the implanted medical device to properly deliver treatment or receive signals via the implanted cables or leads. The insertion indicator may be provided by a mechanical indicator optically viewable once the lead has been correctly inserted, and/or may be provided by an electrically activated light indicator illuminated by a power source associated with the connector block or with a connector tool used to connect the lead or cable to the connector block upon correct insertion of the lead or cable. The insertion indicator may be permanently or removably disposed on the connector block, a connector tool, and/or a can associated with the connector block.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: June 26, 2012
    Assignee: Deringer-Ney, Inc.
    Inventors: Garth W. Boyd, Aaron Engel, Dana Dubuc, Edward F. Smith, III, Michael E. Poppy, Michael E. Grant
  • Patent number: 8192690
    Abstract: A method of treating a gas phase fluidized bed reactor and a method of polymerizing olefins in a gas phase fluidized bed reactor in the presence of a catalyst prone to cause sheeting by introducing a chromium-containing compound into the reactor and forming a high molecular weight polymer coating on the walls of the reactor. Furthermore, a device for and method of introducing the chromium-containing compound into the fluidized bed reactor at a plurality of locations in proximity to a lower section of a bed section wall of the fluidized bed reactor, and forming a high molecular weight polymer coating on the bed section wall.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: June 5, 2012
    Assignee: Univation Technologies, LLC
    Inventors: Agapios K. Agapiou, David M. Glowczwski, Zerong Lin, Gary D. Mohr, Ted A. Powell, Michael E. Sieloff, Edward F. Smith, Kevin B. Stavens, Keith W. Trapp, Michael E. Muhle, F. David Hussein