Patents by Inventor Edward P. Hammond

Edward P. Hammond has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11908662
    Abstract: Embodiments described herein relate to apparatus and techniques for radio frequency (RF) phase control in a process chamber. A process volume is defined in the process chamber by a faceplate electrode and a support pedestal. A grounding bowl is disposed within the process chamber about the support pedestal opposite the process volume. The grounding bowl substantially fills a volume other than the process volume below the support pedestal. A phase tuner circuit is coupled to an RF mesh disposed in the support pedestal and the faceplate electrode. The tuner circuit adjusts a phase difference between a phase of the faceplate electrode and a phase of the RF mesh.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: February 20, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Xiaopu Li, Kallol Bera, Edward P. Hammond, IV, Jonghoon Baek, Amit Kumar Bansal, Jun Ma, Satoru Kobayashi
  • Patent number: 11776835
    Abstract: Exemplary semiconductor processing systems may include a processing chamber and an electrostatic chuck disposed at least partially within the processing chamber. The electrostatic chuck may include at least one electrode and a heater. A semiconductor processing system may include a power supply to provide a signal to the electrode to provide electrostatic force to secure a substrate to the electrostatic chuck. The system may also include a filter communicatively coupled between the power supply and the electrode. The filter is configured to remove or reduce noise introduced into the chucking signal by operating the heater while the electrostatic force on the substrate is maintained. The filter may include active circuitry, passive circuitry, or both, and may include an adjustment circuit to set the gain of the filter so that an output signal level from the filter corresponds to an input signal level for the filter.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: October 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Rana Howlader, Abhigyan Keshri, Sanjay G. Kamath, Dmitry A. Dzilno, Juan Carlos Rocha-Alvarez, Shailendra Srivastava, Kristopher R. Enslow, Xinhai Han, Deenesh Padhi, Edward P. Hammond
  • Patent number: 11699602
    Abstract: Exemplary substrate support assemblies may include a platen characterized by a first surface configured to support a semiconductor substrate. The assemblies may include a first stem section coupled with a second surface of the platen opposite the first surface of the platen. The assemblies may include a second stem section coupled with the first stem section. The second stem section may include a housing and a rod holder disposed within the housing. The second stem section may include a connector seated within the rod holder at a first end of the connector. The second stem section may include a heater rod disposed within the first end of the connector and a heater extension rod coupled with the connector at a second end of the connector. The second stem section may include an RF rod and an RF strap coupling the RF rod with an RF extension rod.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: July 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Jian Li, Edward P. Hammond, Viren Kalsekar, Vidyadharan Srinivasa Murthy Bangalore, Juan Carlos Rocha-Alvarez
  • Publication number: 20230170190
    Abstract: Embodiments of the present disclosure generally relate to substrate supports for process chambers and RF grounding configurations for use therewith. Methods of grounding RF current are also described. A chamber body at least partially defines a process volume therein. A first electrode is disposed in the process volume. A pedestal is disposed opposite the first electrode. A second electrode is disposed in the pedestal. An RF filter is coupled to the second electrode through a conductive rod. The RF filter includes a first capacitor coupled to the conductive rod and to ground. The RF filter also includes a first inductor coupled to a feedthrough box. The feedthrough box includes a second capacitor and a second inductor coupled in series. A direct current (DC) power supply for the second electrode is coupled between the second capacitor and the second inductor.
    Type: Application
    Filed: January 26, 2023
    Publication date: June 1, 2023
    Inventors: Satya THOKACHICHU, Edward P. HAMMOND, IV, Viren KALSEKAR, Zheng John YE, Abdul Aziz KHAJA, Vinay K. PRABHAKAR
  • Patent number: 11626853
    Abstract: A power supply circuit includes a switchable match, including a high voltage bus connectable to a load, a low voltage bus connectable to the load such that the load is in series between the high voltage bus and the low voltage bus, at least two capacitors having a fixed value of capacitance selectively connectable between the high voltage bus and the low voltage bus and a plurality of solid state switches equal in number to the number of capacitors having a fixed value of capacitance connectable between the high voltage bus and the low voltage bus, each switch configured and arranged to selectively connect or disconnect one of the capacitors having a fixed value of capacitance selectively connectable between the high voltage bus and the low voltage bus into electrical communication between the high voltage bus and the low voltage bus, and a variable frequency power supply including a high voltage output connection, the high voltage connection connected to the high voltage bus.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: April 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Edward P. Hammond, IV, Yury Trachuk, Dmitry A. Dzilno
  • Publication number: 20230054444
    Abstract: Exemplary substrate processing systems may include a chamber body defining a transfer region. The systems may include a lid plate seated on the chamber body. The lid plate may define a plurality of apertures. The systems may include a plurality of lid stacks equal to a number of the plurality of apertures. The systems may include a plurality of substrate support assemblies equal to the number of apertures defined through the lid plate. Each assembly may be disposed in one of the processing regions and may include an electrostatic chuck body defining a substrate support surface that defines a substrate seat. Each assembly may include a heater embedded within the chuck body. Each assembly may include bipolar electrodes between the heater and the substrate support surface. Each assembly may include a conductive mesh embedded within the body between the heater and bipolar electrodes.
    Type: Application
    Filed: August 18, 2021
    Publication date: February 23, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Jian Li, Edward P. Hammond, Juan Carlos Rocha-Alvarez, Dmitry A. Dzilno, Wenhao Zhang
  • Patent number: 11569072
    Abstract: Embodiments of the present disclosure generally relate to substrate supports for process chambers and RF grounding configurations for use therewith. Methods of grounding RF current are also described. A chamber body at least partially defines a process volume therein. A first electrode is disposed in the process volume. A pedestal is disposed opposite the first electrode. A second electrode is disposed in the pedestal. An RF filter is coupled to the second electrode through a conductive rod. The RF filter includes a first capacitor coupled to the conductive rod and to ground. The RF filter also includes a first inductor coupled to a feedthrough box. The feedthrough box includes a second capacitor and a second inductor coupled in series. A direct current (DC) power supply for the second electrode is coupled between the second capacitor and the second inductor.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: January 31, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Satya Thokachichu, Edward P. Hammond, IV, Viren Kalsekar, Zheng John Ye, Abdul Aziz Khaja, Vinay K. Prabhakar
  • Publication number: 20230011261
    Abstract: Exemplary substrate support assemblies may include an electrostatic chuck body defining a substrate support surface that defines a substrate seat. The substrate support assemblies may include a support stem coupled with the electrostatic chuck body. The substrate support assemblies may include an upper heater embedded within the electrostatic chuck body. The upper heater may include a center heater zone and one or more annular heater zones that are concentric with the center heating zone. The substrate support assemblies may include a lower heater embedded within the electrostatic chuck body at a position below the upper heater. The lower heater may include a plurality of arcuate heater zones.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 12, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Jian Li, Edward P. Hammond, Vidyadharan Srinivasamurthy, Juan Carlos Rocha-Alvarez
  • Patent number: 11545376
    Abstract: Embodiments of the present disclosure relate to a method and an apparatus for monitoring plasma behavior inside a plasma processing chamber. In one example, a method for monitoring plasma behavior includes acquiring at least one image of a plasma, and determining a plasma parameter based on the at least one image.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: January 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sidharth Bhatia, Edward P. Hammond, IV, Bhaskar Kumar, Anup Kumar Singh, Vivek Bharat Shah, Ganesh Balasubramanian
  • Publication number: 20220403520
    Abstract: Embodiments described herein relate to ground path systems providing a shorter and symmetrical path for radio frequency (RF) energy to propagate to a ground to reduce generation of the parasitic plasma. The ground path system bifurcates the processing volume of the chamber to form an inner volume that isolates an outer volume of the processing volume.
    Type: Application
    Filed: August 22, 2022
    Publication date: December 22, 2022
    Inventors: Tuan Anh NGUYEN, Jason M. SCHALLER, Edward P. HAMMOND, IV, David BLAHNIK, Tejas ULAVI, Amit Kumar BANSAL, Sanjeev BALUJA, Jun MA, Juan Carlos ROCHA-ALVAREZ
  • Publication number: 20220364233
    Abstract: A semiconductor processing chamber for processing semiconductor substrates may include a pedestal to support a substrate with a heater zones and a wire mesh configured to deliver a Radio Frequency (RF) signal to a plasma. The chamber may also include heater zone controls that deliver current to the heater zones and a filter circuit between the heater zone controls and the heater zones. The filter circuit may include inductors on leads from the heater zones and a resonant circuit with a resonant inductor that is magnetically coupled to the lead inductors. The resonant circuit may produce a resonant peak that filters the RF signal delivered to the wire mesh from the leads from the heater zones to prevent the RF signal from reaching the heater zone controls.
    Type: Application
    Filed: May 11, 2021
    Publication date: November 17, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Edward P. Hammond, Dmitry A. Dzilno, Alexander V. Garachtchenko
  • Patent number: 11434569
    Abstract: Embodiments described herein relate to ground path systems providing a shorter and symmetrical path for radio frequency (RF) energy to propagate to a ground to reduce generation of the parasitic plasma. The ground path system bifurcates the processing volume of the chamber to form an inner volume that isolates an outer volume of the processing volume.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: September 6, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Tuan Anh Nguyen, Jason M. Schaller, Edward P. Hammond, IV, David Blahnik, Tejas Ulavi, Amit Kumar Bansal, Sanjeev Baluja, Jun Ma, Juan Carlos Rocha
  • Publication number: 20220255525
    Abstract: A power supply circuit includes a switchable match, including a high voltage bus connectable to a load, a low voltage bus connectable to the load such that the load is in series between the high voltage bus and the low voltage bus, at least two capacitors having a fixed value of capacitance selectively connectable between the high voltage bus and the low voltage bus and a plurality of solid state switches equal in number to the number of capacitors having a fixed value of capacitance connectable between the high voltage bus and the low voltage bus, each switch configured and arranged to selectively connect or disconnect one of the capacitors having a fixed value of capacitance selectively connectable between the high voltage bus and the low voltage bus into electrical communication between the high voltage bus and the low voltage bus, and a variable frequency power supply including a high voltage output connection, the high voltage connection connected to the high voltage bus.
    Type: Application
    Filed: February 5, 2021
    Publication date: August 11, 2022
    Inventors: Edward P. HAMMOND, IV, Yury TRACHUK, Dmitry A. DZILNO
  • Patent number: 11361940
    Abstract: A radio-frequency (RF) power circuit for a multi-electrode cathode in a processing chamber may include an RF source and inductive element(s) that are conductively coupled to the RF source. A first inductive element may be inductively coupled to the inductive element(s), and the first inductive element may be configured to receive a first portion of RF power originating from the RF source and provide the first portion of the RF power for a first pedestal electrode. A second inductive element may also be inductively coupled to the inductive element(s), and the second inductive element may be configured to receive a second portion of RF power originating from the RF source through the inductive element(s) and provide the second portion of the RF power for a second pedestal electrode.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: June 14, 2022
    Assignee: Applied Materials, Inc.
    Inventor: Edward P. Hammond
  • Publication number: 20220115206
    Abstract: A radio-frequency (RF) power circuit for a multi-electrode cathode in a processing chamber may include an RF source and inductive element(s) that are conductively coupled to the RF source. A first inductive element may be inductively coupled to the inductive element(s), and the first inductive element may be configured to receive a first portion of RF power originating from the RF source and provide the first portion of the RF power for a first pedestal electrode. A second inductive element may also be inductively coupled to the inductive element(s), and the second inductive element may be configured to receive a second portion of RF power originating from the RF source through the inductive element(s) and provide the second portion of the RF power for a second pedestal electrode.
    Type: Application
    Filed: October 13, 2020
    Publication date: April 14, 2022
    Applicant: Applied Materials, Inc.
    Inventor: Edward P. Hammond
  • Publication number: 20220102179
    Abstract: Exemplary semiconductor processing systems may include a processing chamber and an electrostatic chuck disposed at least partially within the processing chamber. The electrostatic chuck may include at least one electrode and a heater. A semiconductor processing system may include a power supply to provide a signal to the electrode to provide electrostatic force to secure a substrate to the electrostatic chuck. The system may also include a filter communicatively coupled between the power supply and the electrode. The filter is configured to remove or reduce noise introduced into the chucking signal by operating the heater while the electrostatic force on the substrate is maintained. The filter may include active circuitry, passive circuitry, or both, and may include an adjustment circuit to set the gain of the filter so that an output signal level from the filter corresponds to an input signal level for the filter.
    Type: Application
    Filed: September 29, 2020
    Publication date: March 31, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Rana Howlader, Abhigyan Keshri, Sanjay G. Kamath, Dmitry A. Dzilno, Juan Carlos Rocha-Alvarez, Shailendra Srivastava, Kristopher R. Enslow, Xinhai Han, Deenesh Padhi, Edward P. Hammond
  • Publication number: 20220013373
    Abstract: Exemplary substrate support assemblies may include a platen characterized by a first surface configured to support a semiconductor substrate. The assemblies may include a first stem section coupled with a second surface of the platen opposite the first surface of the platen. The assemblies may include a second stem section coupled with the first stem section. The second stem section may include a housing and a rod holder disposed within the housing. The second stem section may include a connector seated within the rod holder at a first end of the connector. The second stem section may include a heater rod disposed within the first end of the connector and a heater extension rod coupled with the connector at a second end of the connector. The second stem section may include an RF rod and an RF strap coupling the RF rod with an RF extension rod.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 13, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Jian Li, Edward P. Hammond, Viren Kalsekar, Vidyadharan Srinivasa Murthy Bangalore, Juan Carlos Rocha-Alvarez
  • Publication number: 20210296144
    Abstract: A method and apparatus for a heated substrate support pedestal is provided. In one embodiment, a substrate support pedestal includes a ceramic body having a top surface and a bottom surface. The substrate support pedestal has a stem coupled to the bottom surface of the ceramic body. A top electrode is disposed within the ceramic body. A conductive rod is disposed through the stem and coupled to the top electrode. A plurality of heater elements is disposed within the ceramic body below the top electrode. A ground mesh is disposed within the ceramic body, below the plurality of heater elements, and above the bottom surface of the ceramic body.
    Type: Application
    Filed: May 27, 2021
    Publication date: September 23, 2021
    Inventors: Xing LIN, Vijay D. PARKHE, Jianhua ZHOU, Edward P. HAMMOND, IV, Jaeyong CHO, Zheng John YE, Zonghui SU, Juan Carlos ROCHA-ALVAREZ
  • Publication number: 20210166915
    Abstract: The present disclosure relates to a method and apparatus for controlling a plasma sheath near a substrate edge. Changing the voltage/current distribution across the inner electrode and the outer electrode with in the substrate assembly facilitates the spatial distribution of the plasma across the substrate. The method includes providing a first radio frequency power to a central electrode embedded in a substrate support assembly, providing a second radio frequency power to an annular electrode embedded in the substrate support assembly at a location different than the central electrode, wherein the annular electrode circumferentially surrounds the central electrode, monitoring parameters of the first and second radio frequency power, and adjusting one or both of the first and second radio frequency power based on the monitored parameters.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 3, 2021
    Inventors: Edward P. HAMMOND, IV, Jonghoon BAEK
  • Patent number: 10923334
    Abstract: One or more embodiments described herein generally relate to selective deposition of substrates in semiconductor processes. In these embodiments, a precursor is delivered to a process region of a process chamber. A plasma is generated by delivering RF power to an electrode within a substrate support surface of a substrate support disposed in the process region of the process chamber. In embodiments described herein, delivering the RF power at a high power range, such as greater than 4.5 kW, advantageously leads to greater plasma coupling to the electrode, resulting in selective deposition to the substrate, eliminating deposition on other process chamber areas such as the process chamber side walls. As such, less process chamber cleans are necessary, leading to less time between depositions, increasing throughput and making the process more cost-effective.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: February 16, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Satya Thokachichu, Edward P. Hammond, IV, Viren Kalsekar, Zheng John Ye, Sarah Michelle Bobek, Abdul Aziz Khaja, Vinay K. Prabhakar, Venkata Sharat Chandra Parimi, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee