Patents by Inventor Edward R. Wetherbee

Edward R. Wetherbee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210247442
    Abstract: Detecting whether a target utility device that includes multiple electronic components is genuine or suspected counterfeit by: performing a test sequence of energizing and de-energizing the target device and collecting electromagnetic interference (EMI) signals emitted by the target device; generating a target EMI fingerprint from the EMI signals collected; retrieving a plurality of reference EMI fingerprints from a database library, each of which corresponds to a different configuration of electronic components of a genuine device of the same make and model as the target device; iteratively comparing the target EMI fingerprint to the retrieved reference EMI fingerprints and generating a similarity metric between each compared set; and indicating that the target device (i) is genuine where the similarity metric for any individual reference EMI fingerprint satisfies a threshold test, and is a suspect counterfeit device where no similarity metric for any individual reference EMI fingerprint satisfies the test.
    Type: Application
    Filed: February 7, 2020
    Publication date: August 12, 2021
    Inventors: Edward R. WETHERBEE, Guang C. WANG, Kenny C. GROSS, Michael DAYRINGER, Andrew LEWIS, Matthew T. GERDES
  • Publication number: 20210174248
    Abstract: Systems, methods, and other embodiments associated with autonomous cloud-node scoping for big-data machine learning use cases are described. In some example embodiments, an automated scoping tool, method, and system are presented that, for each of multiple combinations of parameter values, (i) set a combination of parameter values describing a usage scenario, (ii) execute a machine learning application according to the combination of parameter values on a target cloud environment, and (iii) measure the computational cost for the execution of the machine learning application. A recommendation regarding configuration of central processing unit(s), graphics processing unit(s), and memory for the target cloud environment to execute the machine learning application is generated based on the measured computational costs.
    Type: Application
    Filed: January 2, 2020
    Publication date: June 10, 2021
    Inventors: Edward R. WETHERBEE, Kenny C. GROSS, Guang C. WANG, Matthew T. GERDES
  • Publication number: 20210065316
    Abstract: During operation, the system receives time-series signals gathered from sensors in a utility system asset. Next, the system uses an inferential model to generate estimated values for the time-series signals, and performs a pairwise differencing operation between actual values and the estimated values for the time-series signals to produce residuals. The system then performs a sequential probability ratio test (SPRT) on the residuals to produce SPRT alarms. Next, the system applies an irrelevance filter to the SPRT alarms to produce filtered SPRT alarms, wherein the irrelevance filter removes SPRT alarms for signals that are uncorrelated with previous failures of similar utility system assets. The system then uses a logistic-regression model to compute an RUL-based risk index for the utility system asset based on the filtered SPRT alarms. When the risk index exceeds a threshold, the system generates a notification indicating that the utility system asset needs to be replaced.
    Type: Application
    Filed: September 4, 2019
    Publication date: March 4, 2021
    Applicant: Oracle International Corporation
    Inventors: Edward R. Wetherbee, Kenny C. Gross
  • Patent number: 10929776
    Abstract: During operation, the system obtains time-series sensor signals gathered from sensors in an asset during operation of the asset in an outdoor environment, wherein the time-series sensor signals include temperature signals. Next, the system produces thermally-compensated time-series sensor signals by performing a thermal-compensation operation on the temperature signals to compensate for variations in the temperature signals caused by dynamic variations in an ambient temperature of the outdoor environment. The system then trains a prognostic inferential model for a prognostic pattern-recognition system based on the thermally-compensated time-series sensor signals. During a surveillance mode for the prognostic pattern-recognition system, the system receives recently-generated time-series sensor signals from the asset, and performs a thermal-compensation operation on temperature signals in the recently-generated time-series sensor signals.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: February 23, 2021
    Assignee: Oracle International Corporation
    Inventors: Kenny C. Gross, Guang C. Wang, Edward R. Wetherbee
  • Patent number: 10685226
    Abstract: The disclosed embodiments provide a system that detects counterfeit electronic components in a target device, which is part of an electrical generation and distribution system. During operation, the system obtains target EMI signals, which were gathered by monitoring target electromagnetic interference (EMI) emissions generated by the target device using one or more target antennas positioned in proximity to the target device. Next, the system generates a target EMI fingerprint for the target device from the target EMI signals. Finally, the system compares the target EMI fingerprint against a reference EMI fingerprint for the target device to determine whether the target device contains one or more counterfeit electronic components.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: June 16, 2020
    Assignee: Oracle International Corporation
    Inventors: Kenny C. Gross, Andrew J. Lewis, Edward R. Wetherbee
  • Publication number: 20200151618
    Abstract: During operation, the system obtains time-series sensor signals gathered from sensors in an asset during operation of the asset in an outdoor environment, wherein the time-series sensor signals include temperature signals. Next, the system produces thermally-compensated time-series sensor signals by performing a thermal-compensation operation on the temperature signals to compensate for variations in the temperature signals caused by dynamic variations in an ambient temperature of the outdoor environment. The system then trains a prognostic inferential model for a prognostic pattern-recognition system based on the thermally-compensated time-series sensor signals. During a surveillance mode for the prognostic pattern-recognition system, the system receives recently-generated time-series sensor signals from the asset, and performs a thermal-compensation operation on temperature signals in the recently-generated time-series sensor signals.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 14, 2020
    Applicant: Oracle International Corporation
    Inventors: Kenny C. Gross, Guang C. Wang, Edward R. Wetherbee
  • Publication number: 20190293697
    Abstract: During a surveillance mode, the system receives present time-series signals gathered from sensors in the power transformer. Next, the system uses an inferential model to generate estimated values for the present time-series signals, and performs a pairwise differencing operation between actual values and the estimated values for the present time-series signals to produce residuals. The system then performs a sequential probability ratio test on the residuals to produce alarms having associated tripping frequencies (TFs). Next, the system uses a logistic-regression model to compute a risk index for the power transformer based on the TFs. If the risk index exceeds a threshold, the system generates a notification that the power transformer needs to be replaced. The system also periodically updates the logistic-regression model based on the results of periodic dissolved gas analyses for the transformer to more accurately compute the index for the power transformer.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 26, 2019
    Applicant: Oracle International Corporation
    Inventors: Kenny C. Gross, Edward R. Wetherbee