Patents by Inventor Eiichi Okuno

Eiichi Okuno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7808003
    Abstract: A silicon carbide semiconductor device is disclosed. The silicon carbide semiconductor device includes a substrate; a drift layer having a first conductivity type and located on a first surface of the substrate; and a vertical type semiconductor element. The vertical type semiconductor element includes: an impurity layer having a second conductivity type, and located in a surface portion of the drift layer; and a first conductivity type region located in the drift layer, spaced away from the impurity layer, located closer to the substrate than the impurity layer, and having an impurity concentration higher than the drift layer.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: October 5, 2010
    Assignee: DENSO CORPORATION
    Inventors: Takeshi Endo, Eiichi Okuno
  • Publication number: 20100244049
    Abstract: A silicon carbide semiconductor device with a Schottky barrier diode includes a first conductivity type silicon carbide substrate, a first conductivity type silicon carbide drift layer on a first surface of the substrate, a Schottky electrode forming a Schottky contact with the drift layer, and an ohmic electrode on a second surface of the substrate. The Schottky electrode includes an oxide layer in direct contact with the drift layer. The oxide layer is made of an oxide of molybdenum, titanium, nickel, or an alloy of at least two of these elements.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 30, 2010
    Applicants: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeo Yamamoto, Takeshi Endo, Eiichi Okuno, Hirokazu Fujiwara, Masaki Konishi, Takashi Katsuno, Yukihiko Watanabe
  • Publication number: 20100200866
    Abstract: A direction of a dislocation line of a threading dislocation is aligned, and an angle between the direction of the dislocation line of the threading dislocation and a [0001]-orientation c-axis is equal to or smaller than 22.5 degrees. The threading dislocation having the dislocation line along with the [0001]-orientation c-axis is perpendicular to a direction of a dislocation line of a basal plane dislocation. Accordingly, the dislocation does not provide an extended dislocation on the c-face, so that a stacking fault is not generated. Thus, when an electric device is formed in a SiC single crystal substrate having the direction of the dislocation line of the threading dislocation, which is the [0001]-orientation c-axis, a SiC semiconductor device is obtained such that device characteristics are excellent without deterioration, and a manufacturing yield ration is improved.
    Type: Application
    Filed: January 21, 2010
    Publication date: August 12, 2010
    Applicant: DENSO CORPORATION
    Inventors: Yasuo Kitou, Hiroki Watanabe, Masanori Nagaya, Kensaku Yamamoto, Eiichi Okuno
  • Patent number: 7763893
    Abstract: A silicon carbide semiconductor device includes a semiconductor element disposed in a semiconductor substrate having a first conductive type silicon carbide layer and a silicon substrate. The device includes: a trench on the silicon carbide layer to reach the silicon substrate; and a conductive layer in the trench between the silicon carbide layer and the silicon substrate to connect to both of them. The semiconductor element is a vertical type semiconductor element so that current flows on both of a top surface portion and a backside surface portion of the semiconductor substrate. The current flows through the conductive layer.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: July 27, 2010
    Assignee: DENSO Corporation
    Inventors: Eiichi Okuno, Toshio Sakakibara
  • Patent number: 7745276
    Abstract: A method for manufacturing a SiC semiconductor device includes: preparing a SiC substrate having a (11-20)-orientation surface; forming a drift layer on the substrate; forming a base region in the drift layer; forming a first conductivity type region in the base region; forming a channel region on the base region to couple between the drift layer and the first conductivity type region; forming a gate insulating film on the channel region; forming a gate electrode on the gate insulating film; forming a first electrode to electrically connect to the first conductivity type region; and forming a second electrode on a backside of the substrate. The device controls current between the first and second electrodes by controlling the channel region. The forming the base region includes epitaxially forming a lower part of the base region on the drift layer.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: June 29, 2010
    Assignee: Denso Corporation
    Inventors: Eiichi Okuno, Hiroki Nakamura, Naohiro Suzuki
  • Patent number: 7713805
    Abstract: A method of manufacturing a silicon carbide semiconductor device having a MOS structure includes preparing a substrate made of silicon carbide, and forming a channel region, a first impurity region, a second impurity region, a gate insulation layer, and a gate electrode to form a semiconductor element on the substrate. In addition, a film is formed on the semiconductor element to provide a material of an interlayer insulation layer, and a reflow process is performed at a temperature about 700° C. or over in an wet atmosphere so that the interlayer insulation layer is formed from the film and an edge portion of the gate electrode is rounded and oxidized.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: May 11, 2010
    Assignee: DENSO CORPORATION
    Inventors: Hiroki Nakamura, Hiroyuki Ichikawa, Eiichi Okuno
  • Publication number: 20100032730
    Abstract: A method of making a semiconductor device includes forming a p-type semiconductor region to an n-type semiconductor substrate in such a manner that the p-type semiconductor region is partially exposed to a top surface of the semiconductor substrate, forming a Schottky electrode of a first material in such a manner that the Schottky electrode is in Schottky contact with an n-type semiconductor region exposed to the top surface of the semiconductor substrate, and forming an ohmic electrode of a second material different from the first material in such a manner that the ohmic electrode is in ohmic contact with the exposed p-type semiconductor region. The Schottky electrode is formed earlier than the ohmic electrode.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 11, 2010
    Applicant: DENSO CORPORATION
    Inventors: Takeshi Endo, Eiichi Okuno, Takeo Yamamoto, Hirokazu Fujiwara, Masaki Konishi, Yukihiko Watanabe, Takashi Katsuno
  • Publication number: 20100006861
    Abstract: A SiC semiconductor device includes: a substrate; a drift layer on a first side of the substrate; a trench in the drift layer; a base region contacting a sidewall of the trench; a source region in an upper portion of the base region; a gate electrode in the trench via a gate insulation film; a source electrode on the source region; and a drain electrode on a second side of the substrate. The source region has multi-layered structure including a first layer and a second layer. The first layer as an upper layer contacts the source electrode with ohmic contact. The second layer as a lower layer has an impurity concentration, which is lower than an impurity concentration of the first layer.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 14, 2010
    Applicant: DENSO CORPORATION
    Inventors: Kensaku Yamamoto, Takeshi Endo, Eiichi Okuno
  • Patent number: 7645658
    Abstract: A method of manufacturing a silicon carbide semiconductor device having a MOS structure includes preparing a substrate made of silicon carbide, and forming a channel region, a first impurity region, a second impurity region, a gate insulation layer, and a gate electrode to form a semiconductor element on the substrate. In addition, a film is formed on the semiconductor element to provide a material of an interlayer insulation layer, and a reflow process is performed at a temperature about 700° C. or over in an wet atmosphere so that the interlayer insulation layer is formed from the film. Furthermore, a dehydration process is performed at about 700° C. or lower in an inert gas atmosphere after the reflow process is performed.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: January 12, 2010
    Assignee: DENSO CORPORATION
    Inventors: Hiroki Nakamura, Hiroyuki Ichikawa, Eiichi Okuno
  • Publication number: 20090311839
    Abstract: A manufacturing method of a SiC device includes: forming a drift layer on a substrate having an orientation tilted from a predetermined orientation with an offset angle; obliquely implanting a second type impurity with a mask on the drift layer so that a deep layer is formed in the drift layer, wherein the impurity is implanted to cancel the offset angle; forming a base region on the deep layer and the drift layer; implanting a first type impurity on the base region so that a high impurity source region is formed; forming a trench having a bottom shallower than the deep layer on the source region to reach the drift layer; forming a gate electrode in the trench via a gate insulation film; forming a source electrode on the source region and the base region; and forming a drain electrode on the substrate.
    Type: Application
    Filed: June 16, 2009
    Publication date: December 17, 2009
    Applicant: DENSO CORPORATION
    Inventors: Shinichirou Miyahara, Eiichi Okuno
  • Publication number: 20090289264
    Abstract: An SiC semiconductor device includes a substrate, a drift layer disposed on a first surface of the substrate, a base region disposed above the drift layer, a source region disposed above the base region, a trench penetrating the source region and the base region to the drift layer, a gate insulating layer disposed on a surface of the trench, a gate electrode disposed on a surface of the gate insulating layer, a first electrode electrically coupled with the source region and the base region, a second electrode disposed on the second surface of the substrate, and a second conductivity-type layer disposed at a portion of the base region located under the source region. The second conductivity-type layer has the second conductivity type and has an impurity concentration higher than the base region.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 26, 2009
    Applicant: DENSO CORPORATION
    Inventors: Hideo Matsuki, Eiichi Okuno, Naohiro Suzuki
  • Publication number: 20090280609
    Abstract: In a method of making a silicon carbide semiconductor device having a MOSFET, after a mask is placed on a surface of a first conductivity type drift layer of silicon carbide, ion implantation is performed by using the mask to form a lower layer of a deep layer extending in one direction. A first conductivity type current scattering layer having a higher concentration than the drift layer is formed on the surface of the drift layer. After another mask is placed on a surface of the current scattering layer, ion implantation is performed by using the other mask to form an upper layer of the deep layer at a position corresponding to the lower layer in such a manner that the lower layer and the upper layer are connected together.
    Type: Application
    Filed: April 9, 2009
    Publication date: November 12, 2009
    Applicant: DENSO CORPORATION
    Inventors: Atsuya Akiba, Eiichi Okuno
  • Publication number: 20090269908
    Abstract: A manufacturing method of a semiconductor device comprises a process of doping conductive impurities in a silicon carbide substrate, a process of forming a cap layer on a surface of the silicon carbide substrate, a process of activating the conductive impurities doped in the silicon carbide substrate, a process of oxidizing the cap layer after a first annealing process, and a process of removing the oxidized cap layer. It is preferred that the cap layer is formed from material that includes metal carbide. Since the oxidation onset temperature of metal carbide is comparatively low, the oxidization of the cap layer becomes easy if metal carbide is included in the cap layer. Specifically, it is preferred that the cap layer is formed from metal carbide that has an oxidation onset temperature of 1000 degrees Celsius or below, such as tantalum carbide.
    Type: Application
    Filed: April 20, 2009
    Publication date: October 29, 2009
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATION
    Inventors: Hirokazu Fujiwara, Masaki Konishi, Takeo Yamamoto, Eiichi Okuno, Yukihiko Watanabe, Takashi Katsuno
  • Publication number: 20090267082
    Abstract: A semiconductor device includes: a semiconductor element having a first surface and a second surface; a first electrode disposed on the first surface of the element; a second electrode disposed on the second surface of the element; and an insulation film covers a part of the first electrode, the first surface of the element and a part of a sidewall of the element. The above semiconductor device has small dimensions and a high breakdown voltage.
    Type: Application
    Filed: April 14, 2009
    Publication date: October 29, 2009
    Applicant: DENSO CORPORATION
    Inventors: Takeo Yamamoto, Takeshi Endo, Eiichi Okuno, Masaki Konishi, Hirokazu Fujiwara
  • Publication number: 20090261350
    Abstract: A silicon carbide semiconductor device includes a substrate, a drift layer located on a first surface of the substrate, a base region located on the drift layer, a source region located on the base region, a trench sandwiched by each of the base region to the drift layer, a channel layer located in the trench, a gate insulating layer located on the channel layer, a gate electrode located on the gate insulating layer, a source electrode electrically coupled with the source region and the base region, a drain electrode located on a second surface of the substrate, and a deep layer located under the base region and extending to a depth deeper than the trench. The deep layer is formed into a lattice pattern.
    Type: Application
    Filed: April 16, 2009
    Publication date: October 22, 2009
    Applicant: DENSO CORPORATION
    Inventors: Kensaku Yamamoto, Eiichi Okuno
  • Publication number: 20090236611
    Abstract: A silicon carbide semiconductor device provided as a semiconductor chip includes a substrate, a drift layer on the substrate, an insulation film on the drift layer, a semiconductor element formed in a cell region of the drift layer, a surface electrode formed on the drift layer and electrically coupled to the semiconductor element through an opening of the insulation film, and a passivation film formed above the drift layer around the periphery of the cell region to cover an outer edge of the surface electrode. The passivation film has an opening through which the surface electrode is exposed outside. A surface of the passivation film is made uneven to increase a length from an inner edge of the opening of the passivation film to a chip edge measured along the surface of the passivation film.
    Type: Application
    Filed: March 18, 2009
    Publication date: September 24, 2009
    Applicants: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeo YAMAMOTO, Takeshi ENDO, Eiichi OKUNO, Masaki KONISHI
  • Publication number: 20090200559
    Abstract: A silicon carbide semiconductor device includes a substrate, a drift layer located on a first surface of the substrate, a base region located on the drift layer, a source region located on the base region, a trench penetrating the source region and the base region to the drift layer, a channel layer located in the trench, a gate insulating layer located on the channel layer, a gate electrode located on the gate insulating layer, a source electrode electrically coupled with the source region and the base region, a drain electrode located on a second surface of the substrate, and a deep layer. The deep layer is located under the base region, extends to a depth deeper than the trench and is formed along an approximately normal direction to a sidewall of the trench.
    Type: Application
    Filed: February 12, 2009
    Publication date: August 13, 2009
    Applicant: DENSO CORPORATION
    Inventors: Naohiro Suzuki, Eiichi Okuno, Hideo Matsuki
  • Patent number: 7569496
    Abstract: A method for manufacturing a SiC semiconductor device includes: forming an impurity layer in a SiC layer; and forming an oxide film on the SiC layer. The forming the impurity layer includes: implanting an impurity ion in the SiC layer; forming a carbon layer on the SiC layer; heating the SiC layer for activating the implanted impurity in the SiC layer covered with the carbon layer; and removing the carbon layer from the SiC layer. The forming the carbon layer includes: coating a resist on the SiC layer; and heating the resist for evaporating organic matter in the resist so that the resist is carbonized. The forming the oxide film is performed after the removing the carbon layer.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: August 4, 2009
    Assignee: DENSO CORPORATION
    Inventors: Hiroki Nakamura, Yoshihiro Miyoshi, Eiichi Okuno
  • Publication number: 20090166730
    Abstract: A SiC semiconductor device includes: a substrate; a drift layer on the substrate; a trench on the drift layer; a base region in the drift layer sandwiching the trench; a channel between the base region and the trench; a source region in the base region sandwiching the trench via the channel; a gate electrode in the trench via a gate insulation film; a source electrode coupled with the source region; a drain electrode on the substrate opposite to the drift layer; and a bottom layer under the trench. An edge portion of the bottom layer under a corner of a bottom of the trench is deeper than a center portion of the bottom layer under a center portion of the bottom of the trench.
    Type: Application
    Filed: December 23, 2008
    Publication date: July 2, 2009
    Applicant: DENSO CORPORATION
    Inventors: Eiichi Okuno, Naohiro Suzuki, Nobuyuki Kato
  • Publication number: 20090159898
    Abstract: A semiconductor device is provided in which the contact resistance of the interface between an electrode and the semiconductor substrate is reduced. The semiconductor device includes a 4H polytype SiC substrate, and an electrode formed on a surface of the substrate. A 3C polytype layer, which extends obliquely relative to the surface of the substrate and whose end portion at the substrate surface is in contact with the electrode, is formed at the surface of the substrate. The 3C polytype layer has a lower bandgap than 4H polytype. Hence, electrons present in the 4H polytype region pass through the 3C polytype layer and reach the electrode. More precisely, the width of the passageway of the electrons is determined by the thickness of the 3C polytype layer. Consequently, with this semiconductor device, in which the passageway of the electrons is narrow, the electrons are able to reach the electrode at a speed close to the theoretical value, by the quantum wire effect.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 25, 2009
    Inventors: Hirokazu FUJIWARA, Masaki Konishi, Eiichi Okuno