Patents by Inventor Eiji Hirata

Eiji Hirata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12207997
    Abstract: The present invention provides: a nonwoven fabric which gives a sufficiently soft touch when touched by a human hand, while being suppressed in slipperiness between nonwoven fabrics during the production process of a product such as a sanitary material; and a method for producing a nonwoven fabric. One embodiment of the present invention provides a nonwoven fabric which is formed of fibers containing a thermoplastic resin, wherein: the average single fiber fineness of the fibers is 0.7 dtex to 4.0 dtex; the fibers contain 0.01% by mass to 1.5% by mass of a fatty acid amide relative to the total mass of the fibers; and the coverage of the surfaces of the fibers by the fatty acid amide is from 20% to 90%.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: January 28, 2025
    Assignee: Mitsui Chemicals Asahi Life Materials Co., Ltd.
    Inventors: Daiki Hirata, Hidesato Shibata, Nobuhiro Inokuma, Eiji Shiota
  • Publication number: 20250016464
    Abstract: In one example, a solid-state imaging device includes a pixel array with pixels arrayed in a matrix. The pixels include first pixels that respectively include a photoelectric conversion section that performs photoelectric conversion of incident light; a transfer transistor that controls transfer of a charge generated in the photoelectric conversion section; a floating diffusion region that accumulates the charge transferred from the photoelectric conversion section via the transfer transistor; and an amplification transistor that causes a voltage signal corresponding to the charge accumulated in the floating diffusion region to emerge in a signal line. The first pixels are arrayed in a first diagonal direction in the pixel array, and at least two of the first pixels arrayed in the first diagonal direction share one region defined as the floating diffusion region.
    Type: Application
    Filed: December 28, 2022
    Publication date: January 9, 2025
    Inventors: Shun Kaizu, Eiji Hirata
  • Publication number: 20240406577
    Abstract: A high-frequency image can be acquired at low computational cost at high speed. A polarization optical unit 20 separates incident light into first polarized light and second polarized light to perform optical low-pass filter processing on the first polarized light and combines the first polarized light subjected to the optical low-pass filter processing and the second polarized light not subjected to the optical low-pass filter processing to generate combined light. A polarization image acquisition unit 30 includes a first polarizing pixel that generates pixel information on the first polarization image and a second polarizing pixel that generates pixel information on the second polarization image on the basis of the combined light. An image processing unit 40 performs a difference computation between the first polarization image and the second polarization image acquired by the polarization image acquisition unit 30 to generates the high-frequency image.
    Type: Application
    Filed: September 26, 2022
    Publication date: December 5, 2024
    Applicant: Sony Group Corporation
    Inventors: Yuhi KONDO, Shun KAIZU, Eiji HIRATA, Teppei KURITA, Taishi ONO, Legong SUN
  • Patent number: 12088956
    Abstract: An image processing apparatus according to an embodiment of the present technology includes a first generator and a second generator. The first generator generates projection images correspondingly to respective monochromatic projectors of a plurality of monochromatic projectors using respective correction parameters, each projection image including a first pixel region that includes a content image, and a second pixel region that is a region other than the first pixel region, the second pixel region including a feature-point image in at least a portion of the second pixel region. The second generator detects the feature-point image in a captured image obtained by capturing the projection image projected by each of the plurality of monochromatic projectors, and generates the correction parameter on the basis of a result of the detection of the feature-point image.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: September 10, 2024
    Assignee: SONY GROUP CORPORATION
    Inventors: Eiji Hirata, Shun Kaizu
  • Publication number: 20230283926
    Abstract: There is provided an imaging device including a pixel array section including pixel units two-dimensionally arranged in a matrix pattern, each pixel unit including a photoelectric converter, and a plurality of column signal lines disposed according to a first column of the pixel units. The imaging device further includes an analog to digital converter that is shared by the plurality of column signal lines.
    Type: Application
    Filed: May 16, 2023
    Publication date: September 7, 2023
    Applicant: SONY GROUP CORPORATION
    Inventors: Atsumi NIWA, Yosuke UENO, Shimon TESHIMA, Daijiro ANAI, Yoshinobu FURUSAWA, Taishin YOSHIDA, Takahiro UCHIMURA, Eiji HIRATA
  • Patent number: 11743603
    Abstract: A solid-state imaging device adapted to encrypt data is described. The solid-state imaging device may include a sensor die comprising an array of imaging pixels formed on a first side of the sensor die and first wiring layers formed on a second side of the sensor die, wherein at least one of the imaging pixels is configured to generate specific signals; a logic die comprising second wiring layers formed on a first side of the logic die; and an encryption processor on the logic die configured to generate encrypted data using the specific signals. The first side of the logic die may be mounted adjacent to the second side of the sensor die and the first wiring layers electrically connect to the second wiring layers, wherein the at least one of the imaging pixels, the encryption processor, and a connecting conductor in which the specific signals pass through from the at least one of the imaging pixels to the encryption processor are located interior to the solid-state imaging device.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: August 29, 2023
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Yusuke Minagawa, Taishin Yoshida, Marie Toyoshima, Toru Akishita, Tomohiro Morimoto, Masafumi Kusakawa, Ikuhiro Tamura, Takahiro Akahane, Eiji Hirata, Yoshinobu Furusawa
  • Publication number: 20230262193
    Abstract: An image processing apparatus according to an embodiment of the present technology includes a first generator and a second generator. The first generator generates projection images correspondingly to respective monochromatic projectors of a plurality of monochromatic projectors using respective correction parameters, each projection image including a first pixel region that includes a content image, and a second pixel region that is a region other than the first pixel region, the second pixel region including a feature-point image in at least a portion of the second pixel region. The second generator detects the feature-point image in a captured image obtained by capturing the projection image projected by each of the plurality of monochromatic projectors, and generates the correction parameter on the basis of a result of the detection of the feature-point image.
    Type: Application
    Filed: July 12, 2021
    Publication date: August 17, 2023
    Applicant: Sony Group Corporation
    Inventors: Eiji HIRATA, Shun KAIZU
  • Patent number: 11696053
    Abstract: There is provided an imaging device including a pixel array section including pixel units two-dimensionally arranged in a matrix pattern, each pixel unit including a photoelectric converter, and a plurality of column signal lines disposed according to a first column of the pixel units. The imaging device further includes an analog to digital converter that is shared by the plurality of column signal lines.
    Type: Grant
    Filed: September 20, 2022
    Date of Patent: July 4, 2023
    Assignee: SONY GROUP CORPORATION
    Inventors: Atsumi Niwa, Yosuke Ueno, Shimon Teshima, Daijiro Anai, Yoshinobu Furusawa, Taishin Yoshida, Takahiro Uchimura, Eiji Hirata
  • Publication number: 20230104085
    Abstract: The range-finding apparatus (1) includes a light source (200), an optical receiver (1103), a setting unit (100), a detector (1100), and a calculation unit (300). The light source (200) projects light with a first irradiation pattern in a first period and projects light with a second irradiation pattern in a second period. The optical receiver (1103) receives light to output a pixel signal. The setting unit (100) sets a reference signal on the basis of the pixel signal in the first period. The detector (1100) detects whether or not the pixel signal varies from the reference signal by a first value or more in the second period and outputs a first detection signal indicative of a result obtained by the detection. The calculation unit (300) calculates a distance to a to-be-measured object using the first detection signal.
    Type: Application
    Filed: January 22, 2021
    Publication date: April 6, 2023
    Inventors: TAKAHIRO AKAHANE, SHUN KAIZU, YUSUKE IKEDA, YASUTAKA KIMURA, SHINICHIROU ETOU, TAKESHI OYAKAWA, NAOTO NAGAKI, EIJI HIRATA, HIROSHI YUASA
  • Publication number: 20230074464
    Abstract: The range-finding apparatus (1) includes an optical receiver (110), a light source unit (200), a converter (134), and a calculation unit (300). The optical receiver (110) receives light to output a pixel signal. The light source unit (200) projects light with a first irradiation pattern in a first period and projects light with a second irradiation pattern in a second period. The converter (134) sequentially converts the pixel signal bit by bit using binary search to output a first digital signal and a second digital signal, the first digital signal being output by performing the conversion with a first bit width in the first period, the second digital signal being output by performing the conversion with a second bit width in the second period, the second bit width being less than the first bit width. The calculation unit (300) calculates a distance on the basis of the first digital signal and the second digital signal.
    Type: Application
    Filed: January 25, 2021
    Publication date: March 9, 2023
    Inventors: TAKAHIRO AKAHANE, YUSUKE IKEDA, SHUN KAIZU, EIJI HIRATA, HIROSHI YUASA, SHINICHIROU ETOU, YASUTAKA KIMURA, TAKESHI OYAKAWA, NAOKI YOSHIMOCHI
  • Publication number: 20230013673
    Abstract: There is provided an imaging device including a pixel array section including pixel units two-dimensionally arranged in a matrix pattern, each pixel unit including a photoelectric converter, and a plurality of column signal lines disposed according to a first column of the pixel units. The imaging device further includes an analog to digital converter that is shared by the plurality of column signal lines.
    Type: Application
    Filed: September 20, 2022
    Publication date: January 19, 2023
    Applicant: SONY GROUP CORPORATION
    Inventors: Atsumi NIWA, Yosuke UENO, Shimon TESHIMA, Daijiro ANAI, Yoshinobu FURUSAWA, Taishin YOSHIDA, Takahiro UCHIMURA, Eiji HIRATA
  • Patent number: 11483509
    Abstract: There is provided an imaging device including a pixel array section including pixel units two-dimensionally arranged in a matrix pattern, each pixel unit including a photoelectric converter, and a plurality of column signal lines disposed according to a first column of the pixel units. The imaging device further includes an analog to digital converter that is shared by the plurality of column signal lines.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: October 25, 2022
    Assignee: SONY CORPORATION
    Inventors: Atsumi Niwa, Yosuke Ueno, Shimon Teshima, Daijiro Anai, Yoshinobu Furusawa, Taishin Yoshida, Takahiro Uchimura, Eiji Hirata
  • Patent number: 11394913
    Abstract: The present technology is provided to accurately correct uneven luminance while suppressing an increase in the size of the solid-state imaging element. A pixel array unit includes a plurality of lines each including a predetermined number of pixels each being arrayed in a predetermined direction. An analog-to-digital conversion unit includes more than the predetermined number of analog-to-digital converters that convert analog signals into digital signals. A scanning circuit controls to sequentially select the plurality of lines and output more than the predetermined number of analog signals to the analog-to-digital conversion unit every time the line is selected. A correction unit performs black level correction processing on the digital signal.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: July 19, 2022
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Atsumi Niwa, Shizunori Matsumoto, Eiji Hirata
  • Patent number: 10992892
    Abstract: There is provided an imaging device that includes a pixel, the pixel comprising: a photodetector; a control transistor; a capacitor coupled to the photodetector; a reset transistor coupled between the control transistor and the capacitor; an amplifier transistor having a gate terminal coupled to the capacitor; and a select transistor coupled to the amplifier transistor; a first signal line coupled to the select transistor; and a first amplifying circuit including a first input terminal coupled to the first signal line and a second input terminal configured to receive a first reference signal and an output terminal coupled to the control transistor.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: April 27, 2021
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Yusuke Ikeda, Eiji Hirata, Kazunori Yamamoto
  • Publication number: 20210099660
    Abstract: There is provided an imaging device including a pixel array section including pixel units two-dimensionally arranged in a matrix pattern, each pixel unit including a photoelectric converter, and a plurality of column signal lines disposed according to a first column of the pixel units. The imaging device further includes an analog to digital converter that is shared by the plurality of column signal lines.
    Type: Application
    Filed: December 11, 2020
    Publication date: April 1, 2021
    Applicant: SONY CORPORATION
    Inventors: Atsumi NIWA, Yosuke UENO, Shimon TESHIMA, Daijiro ANAI, Yoshinobu FURUSAWA, Taishin YOSHIDA, Takahiro UCHIMURA, Eiji HIRATA
  • Publication number: 20210075990
    Abstract: The present technology is provided to accurately correct uneven luminance while suppressing an increase in the size of the solid-state imaging element. A pixel array unit includes a plurality of lines each including a predetermined number of pixels each being arrayed in a predetermined direction. An analog-to-digital conversion unit includes more than the predetermined number of analog-to-digital converters that convert analog signals into digital signals. A scanning circuit controls to sequentially select the plurality of lines and output more than the predetermined number of analog signals to the analog-to-digital conversion unit every time the line is selected. A correction unit performs black level correction processing on the digital signal.
    Type: Application
    Filed: November 23, 2020
    Publication date: March 11, 2021
    Inventors: ATSUMI NIWA, SHIZUNORI MATSUMOTO, EIJI HIRATA
  • Patent number: 10911707
    Abstract: There is provided an imaging device including a pixel array section including pixel units two-dimensionally arranged in a matrix pattern, each pixel unit including a photoelectric converter, and a plurality of column signal lines disposed according to a first column of the pixel units. The imaging device further includes an analog to digital converter that is shared by the plurality of column signal lines.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: February 2, 2021
    Assignee: Sony Corporation
    Inventors: Atsumi Niwa, Yosuke Ueno, Shimon Teshima, Daijiro Anai, Yoshinobu Furusawa, Taishin Yoshida, Takahiro Uchimura, Eiji Hirata
  • Patent number: 10880509
    Abstract: The present technology is provided to accurately correct uneven luminance while suppressing an increase in the size of the solid-state imaging element. A pixel array unit includes a plurality of lines each including a predetermined number of pixels each being arrayed in a predetermined direction. An analog-to-digital conversion unit includes more than the predetermined number of analog-to-digital converters that convert analog signals into digital signals. A scanning circuit controls to sequentially select the plurality of lines and output more than the predetermined number of analog signals to the analog-to-digital conversion unit every time the line is selected. A correction unit performs black level correction processing on the digital signal.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: December 29, 2020
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Atsumi Niwa, Shizunori Matsumoto, Eiji Hirata
  • Publication number: 20200236319
    Abstract: There is provided an imaging device including a pixel array section including pixel units two-dimensionally arranged in a matrix pattern, each pixel unit including a photoelectric converter, and a plurality of column signal lines disposed according to a first column of the pixel units. The imaging device further includes an analog to digital converter that is shared by the plurality of column signal lines.
    Type: Application
    Filed: April 3, 2020
    Publication date: July 23, 2020
    Applicant: SONY CORPORATION
    Inventors: Atsumi NIWA, Yosuke UENO, Shimon TESHIMA, Daijiro ANAI, Yoshinobu FURUSAWA, Taishin YOSHIDA, Takahiro UCHIMURA, Eiji HIRATA
  • Patent number: 10666889
    Abstract: The present disclosure relates to a solid-state imaging element capable of suppressing an occurrence of image breakup in imaging of a moving subject, a solid-state imaging element operation method, an imaging apparatus, and an electronic device. Pixel signals of G pixels (including Gb and Gr pixels) defined as a reference of a luminance value among pixels of images captured by an imaging element are simultaneously scanned to undergo analog-to-digital conversion in an order not causing stagnation in a predetermined direction of analog-to-digital conversion, and at this time, R and B pixels other than the pixels defined as the reference of the luminance value undergo analog-to-digital conversion by simultaneous scan of pixels in the vicinity of the G pixels defined as the reference of the luminance value that undergo analog-to-digital conversion. The present disclosure can be applied to an imaging apparatus.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: May 26, 2020
    Assignee: SONY CORPORATION
    Inventor: Eiji Hirata