Patents by Inventor Ekmini Anuja De Silva

Ekmini Anuja De Silva has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200350177
    Abstract: An initial semiconductor structure includes an underlying substrate, a hard mask stack, an organic planarization layer (OPL), a first complementary material, and a patterned photoresist layer patterned into a plurality of photoresist pillars defining a plurality of photoresist trenches. The first material is partially etched inward of the trenches, to provide trench regions, and the photoresist is removed. The trench regions are filled with a second complementary material, preferentially etchable with respect to the first material. A polymer brush is grafted on the second material but not the first material, to form polymer brush regions with intermediate regions not covered by the brush. The first material is anisotropically etched the at the intermediate regions but not the brush regions. The OPL is etched inward of the intermediate regions, to provide a plurality of OPL pillars defining a plurality of OPL trenches inverted with respect to the photoresist pillars.
    Type: Application
    Filed: April 30, 2019
    Publication date: November 5, 2020
    Inventors: Nelson Felix, Ekmini Anuja De Silva, Praveen Joseph, Ashim Dutta
  • Publication number: 20200328251
    Abstract: A semiconductor device structure includes a metallization stack comprising one or more patterned metal layers. A bi-layer dielectric cap is disposed on and in contact with the metallization stack. At least one memory device is disposed on the bi-layer dielectric cap. A method for forming the metallization stack includes receiving a structure comprising a metallization layer and a first dielectric cap layer formed over the metallization layer. The metallization layer includes a logic area and a memory area. At least one memory stack is formed over the first dielectric cap layer. A self-assembled monolayer is formed over and in contact with the memory stack. A second dielectric cap layer is formed on and in contact with the first dielectric cap layer. The second dielectric cap layer is not formed on the self-assembled monolayer.
    Type: Application
    Filed: April 12, 2019
    Publication date: October 15, 2020
    Inventors: Ashim DUTTA, Ekmini Anuja DE SILVA, Chih-Chao YANG
  • Patent number: 10804106
    Abstract: Techniques for providing a high temperature soft mask for semiconductor devices are described. In an embodiment, spin coating semiconductor device components with organic planarization material having a defined aromatic content aromatic content to provide an organic planarization layer. The method can further comprise ultra-fast annealing the organic planarization layer and forming an implanted or doped region in the semiconductor device. Three-dimensional FinFET components of a device can be spin coated with organic planarization material having high aromatic content, with the device cured at a first temperature. The organic planarization layer can be ultra-fast annealed at a second temperature that is greater than the first temperature. Aspects can include patterning the device, and forming an implanted or doped region in a semiconductor device.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: October 13, 2020
    Assignee: International Business Machines Corporation
    Inventors: Mona Ebrish, Oleg Gluschenkov, Indira Seshadri, Ekmini Anuja De Silva
  • Patent number: 10790372
    Abstract: A method of fabricating a semiconductor device includes forming an intermediate semiconductor device having dummy gate material and an oxide layer. The intermediate semiconductor device includes a substrate, fins, a shallow trench isolation layer, an oxide layer, and an interlayer dielectric. The dummy gate material and the oxide layer are removed. A high k dielectric material is deposited on a top surface of the shallow trench isolation layer. A replacement metal gate stack is deposited. Gate cut lithographing patterning is performed to open portions of the gate. The replacement metal gate stack and the interlayer dielectric are etched. A cap layer is deposited on exposed ends of at least two replacement metal gate. Trenches are filled with the interlayer dielectric and the semiconductor device is formed. Selective deposition of the insulating material on the ends of the replacement metal gates prevents gate end shorts.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: September 29, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Andrew Greene, Ekmini Anuja De Silva
  • Patent number: 10770361
    Abstract: Semiconductor devices and methods are provided to fabricate fin field-effect transistor (FinFET) devices having uniform fin height profiles. For example, uniformity of fin height profiles for FinFET devices is obtained by implementing a gate oxide removal process which is designed to prevent etching of an isolation layer (e.g., a shallow trench isolation layer) formed of an oxide material during removal of, e.g., sacrificial gate oxide layers of dummy gate structures during a replacement metal gate process.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: September 8, 2020
    Assignee: International Business Machines Corporation
    Inventors: Yi Song, Veeraraghavan S. Baskar, Jay W. Strane, Ekmini Anuja De Silva
  • Patent number: 10768532
    Abstract: A method of co-optimizing lithographic and etching processes for semiconductor fabrication. The method includes determining a first set of locations for a first complementary laser annealing to be performed on. The first complementary laser annealing is performed at the first set of locations on at least a first semiconductor wafer of a plurality of semiconductor wafers. The first complementary laser annealing is performed before or after a first post-exposure baking process for the at least first semiconductor wafer. After an etching process has been performed on at least the first semiconductor wafer, a second set of locations is determined for a second complementary laser annealing to be performed on. The second complementary laser annealing is performed at the second set of locations on at least a second semiconductor wafer of the plurality of semiconductor wafers. The second complementary laser annealing is performed before or after a second post-exposure baking process.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: September 8, 2020
    Assignee: International Business Machines Corporation
    Inventors: Jing Sha, Ekmini Anuja De Silva, Nelson Felix, Derren Dunn
  • Publication number: 20200279956
    Abstract: A semiconductor structure and a method for fabricating the same. The semiconductor structure includes at least a first channel region and a second channel region. The first channel region and the second channel region each include metal gate structures surrounding a different nanosheet channel layer. The metal gate structures of the first and second channel regions are respectively separated from each other by an unfilled gap. The method includes forming a gap fill layer between and in contact with gate structures surrounding nanosheet channel layers in multiple channel regions. Then, after the gap fill layer has been formed for each nanosheet stack, a masking layer is formed over the gate structures and the gap fill layer in at least a first channel region. The gate structures and the gap fill layer in at least a second channel region remain exposed.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Inventors: Indira SESHADRI, Ekmini Anuja DE SILVA, Jing GUO, Ruqiang BAO, Muthumanickam SANKARAPANDIAN, Nelson FELIX
  • Publication number: 20200274066
    Abstract: A semiconductor device structure and a method for fabricating the same. The semiconductor device structure includes an embedded memory device and an electrode in contact with a top surface of the memory embedded device. A metal encapsulation layer is in contact with a top surface of the electrode and a portion of sidewalls of the electrode. The metal encapsulation layer comprises one or more materials that are chemical etch resistant and are conductive when oxidized. The method includes forming an insulating layer over a memory device and an electrode in contact with the memory device. Portions of the insulating layer are etched. The etching exposes a top surface and a portion of sidewalls of the electrode. A metal encapsulation layer is formed over and in contact with the top surface and the portion of sidewalls of the electrode.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 27, 2020
    Inventors: Ashim DUTTA, Ekmini Anuja De Silva, Jennifer Church
  • Patent number: 10755928
    Abstract: A plurality of mandrels and silicon dioxide spacer structures are formed, with the spacer structures interdigitated between the mandrels. An organic planarization layer is applied, as are a thin oxide layer and a layer of photoresist patterned in hole tone over the oxide layer, thereby defining a domain. At least one hole is etched in the thin oxide layer and the organic planarization layer to expose a portion of a hard mask layer surface between the spacer structures. A selective polymer brush is applied, which grafts only to the exposed hard mask surface, followed by solvent rinsing the domain to remove ungrafted polymer brush. At least one precursor is infused to an etch resistant material into the polymer brush by a sequential infiltration synthesis process. The organic planarization layer is ashed to convert the infused precursor into oxide form to further enhance etch selectivity to the hard mask layer.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: August 25, 2020
    Assignee: International Business Machines Corporation
    Inventors: Chi-Chun Liu, Kristin Schmidt, Yann Mignot, Martha Inez Sanchez, Daniel Paul Sanders, Nelson Felix, Ekmini Anuja De Silva
  • Patent number: 10755926
    Abstract: The invention herein includes enhancing the surface of an amorphous silicon hardmask through implantation of nonpolar, hydrophobic elements, resulting in increased hydrophobicity and increased resist adhesion of the amorphous silicon surface. According to the invention, implanting the hydrophobic elements may involve introduction of the hydrophobic elements into the surface of the amorphous silicon by way of low energy implantation and plasma treatment. The implanted hydrophobic element may be Boron, Xenon, Fluorine, Phosphorus, a combination thereof, or other hydrophobic elements. According to the invention, the surface of the amorphous silicon is enhanced with 10-15% hydrophobic element, however in other embodiments, this composition may be adjusted as needed. In any case, however, the invention herein includes maintaining an etch selectivity of the bulk amorphous silicon hardmask.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: August 25, 2020
    Assignee: International Business Machines Corporation
    Inventors: Abraham Arceo de la Pena, Ekmini Anuja De Silva, Nelson Felix
  • Patent number: 10734234
    Abstract: The present disclosure relates to methods and apparatuses related to the deposition of a protective layer selective to an interlayer dielectric layer so that the protective layer is formed onto a top portion associated with the interlayer dielectric layer. In some embodiments, a method comprises: forming an interlayer dielectric layer on a substrate; covering a trench region with a metal liner, wherein the trench region is situated above the substrate and formed within the interlayer dielectric layer; and depositing a protective layer selective to the interlayer dielectric layer so that the protective layer is formed onto a top portion associated with the interlayer dielectric layer. In various embodiments, the depositing the protective layer comprises: repeatedly depositing the protective layer via a multi-deposition sequence; or depositing a self-assembled monolayer onto the top portion.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: August 4, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kisup Chung, Ekmini Anuja De Silva, Andrew Greene, Siva Kanakasabapathy, Indira Seshadri
  • Publication number: 20200243335
    Abstract: A plurality of mandrels and silicon dioxide spacer structures are formed, with the spacer structures interdigitated between the mandrels. An organic planarization layer is applied, as are a thin oxide layer and a layer of photoresist patterned in hole tone over the oxide layer, thereby defining a domain. At least one hole is etched in the thin oxide layer and the organic planarization layer to expose a portion of a hard mask layer surface between the spacer structures. A selective polymer brush is applied, which grafts only to the exposed hard mask surface, followed by solvent rinsing the domain to remove ungrafted polymer brush. At least one precursor is infused to an etch resistant material into the polymer brush by a sequential infiltration synthesis process. The organic planarization layer is ashed to convert the infused precursor into oxide form to further enhance etch selectivity to the hard mask layer.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 30, 2020
    Inventors: Chi-Chun Liu, Kristin Schmidt, Yann Mignot, Martha Inez Sanchez, Daniel Paul Sanders, Nelson Felix, Ekmini Anuja De Silva
  • Publication number: 20200234957
    Abstract: A method of making a semiconductor device includes depositing an oxide material on a patterned mask arranged on a substrate. The method further includes removing a portion of the oxide material such that the patterned mask is exposed. The method also includes removing the patterned mask such that the substrate is exposed between areas of remaining oxide material.
    Type: Application
    Filed: January 22, 2019
    Publication date: July 23, 2020
    Inventors: Yann MIGNOT, Yongan XU, Ekmini Anuja DE SILVA, Ashim DUTTA, Chi-Chun LIU
  • Publication number: 20200227532
    Abstract: A method of fabricating a semiconductor device includes forming an intermediate semiconductor device having dummy gate material and an oxide layer. The intermediate semiconductor device includes a substrate, fins, a shallow trench isolation layer, an oxide layer, and an interlayer dielectric. The dummy gate material and the oxide layer are removed. A high k dielectric material is deposited on a top surface of the shallow trench isolation layer. A replacement metal gate stack is deposited. Gate cut lithographing patterning is performed to open portions of the gate. The replacement metal gate stack and the interlayer dielectric are etched. A cap layer is deposited on exposed ends of at least two replacement metal gate. Trenches are filled with the interlayer dielectric and the semiconductor device is formed. Selective deposition of the insulating material on the ends of the replacement metal gates prevents gate end shorts.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 16, 2020
    Inventors: Andrew Greene, Ekmini Anuja de Silva
  • Publication number: 20200176332
    Abstract: Semiconductor devices and methods are provided to fabricate fin field-effect transistor (FinFET) devices having uniform fin height profiles. For example, uniformity of fin height profiles for FinFET devices is obtained by implementing a gate oxide removal process which is designed to prevent etching of an isolation layer (e.g., a shallow trench isolation layer) formed of an oxide material during removal of, e.g., sacrificial gate oxide layers of dummy gate structures during a replacement metal gate process.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 4, 2020
    Inventors: Yi Song, Veeraraghavan S. Baskar, Jay W. Strane, Ekmini Anuja De Silva
  • Patent number: 10665514
    Abstract: Semiconductor devices and methods are provided to fabricate fin field-effect transistor (FinFET) devices having uniform fin height profiles. For example, uniformity of fin height profiles for FinFET devices is obtained by implementing a gate oxide removal process which is designed to prevent etching of an isolation layer (e.g., a shallow trench isolation layer) formed of an oxide material during removal of, e.g., sacrificial gate oxide layers of dummy gate structures during a replacement metal gate process.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: May 26, 2020
    Assignee: International Business Machines Corporation
    Inventors: Yi Song, Veeraraghavan S. Baskar, Jay W. Strane, Ekmini Anuja De Silva
  • Patent number: 10665461
    Abstract: A method for fabricating a semiconductor device with multiple threshold voltages includes masking a substrate structure to selectively form work-function metal layers on vertical field effect transistors. In the method, a first work function metal layer is formed on a high-k dielectric layer of a substrate structure comprising vertical field effect transistors. The first work function metal layer and the high-k dielectric layer are etched to form gate regions for each vertical field effect transistor. A resist mask is formed over a first of the vertical field effect transistors. The resist mask isolates the first of the vertical field effect transistors from a second of the vertical field effect transistors. A second work function metal layer is selectively formed on the first work function metal layer of the gate region of the second of the vertical field effect transistors. The resist mask is then removed.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: May 26, 2020
    Assignee: International Business Machines Corporation
    Inventors: Praveen Joseph, Indira Seshadri, Ekmini Anuja De Silva
  • Publication number: 20200161540
    Abstract: A method for selectively encapsulating embedded memory pillars in a semiconductor device includes coating a passivation layer on a first dielectric surface on a first outer dielectric layer present in the semiconductor device. The passivation layer adheres to the dielectric surface selective to metal. The method includes depositing an encapsulation layer on side and top surfaces of the embedded memory pillars. The passivation layer prevents deposition of the encapsulation layer on the first dielectric surface of the first outer layer dielectric. The method includes removing the first outer dielectric layer from horizontal subraces around the embedded memory pillar and the encapsulation layer from the top surface of the embedded memory pillars.
    Type: Application
    Filed: November 19, 2018
    Publication date: May 21, 2020
    Inventors: Ashim Dutta, Ekmini Anuja de Silva, Jennifer Church, Luciana Meli Thompson
  • Patent number: 10658190
    Abstract: Extreme ultraviolet (EUV) lithographic patterning methods are provided which implement directional deposition on the EUV resist mask to improve selectivity and critical dimension control during the patterning of features in multiple layers. A hard mask material is deposited on a substrate structure using directional deposition. The hard mask material forms a hard mask layer that covers patterning features of an EUV resist mask of the substrate structure. The hard mask material is etched selective to a layer underlying the EUV resist mask to remove portions of the hard mask material that were deposited on the underlying layer during the directional deposition without uncovering the patterning features of the EUV resist mask. At least one layer of the substrate structure is patterned based on the EUV resist mask and the hard mask layer.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: May 19, 2020
    Assignee: International Business Machines Corporation
    Inventors: Yongan Xu, Ekmini Anuja De Silva, Su Chen Fan, Yann Mignot
  • Patent number: 10656527
    Abstract: A lithographic patterning method includes forming a multi-layer patterning material film stack on a semiconductor substrate. Forming the patterning material film stack more particularly includes forming a hard mask layer and forming a resist layer over the hard mask layer. The hard mask layer is configured to support selective deposition of a metal-containing layer on the resist layer, the selective deposition of the metal-containing layer on the resist layer occurring after pattern development. The method further includes exposing the multi-layer patterning material film stack to patterning radiation to form a desired pattern in the resist layer, developing the pattern formed in the resist layer, and selectively depositing the metal-containing layer on the developed pattern in the resist layer. The selective deposition avoids deposition of the metal-containing layer on portions of the hard mask layer corresponding to respective openings in the resist layer.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: May 19, 2020
    Assignee: International Business Machines Corporation
    Inventors: Ekmini Anuja De Silva, Indira Seshadri, Jing Guo, Ashim Dutta, Nelson Felix