Patents by Inventor Emanuel Feldman

Emanuel Feldman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250222252
    Abstract: The problem of a potentially high amount of supra-threshold charge passing through the patient's tissue at the end of an Implantable Pulse Generator (IPG) program is addressed by circuitry that periodically dissipates only small amount of the charge stored on capacitances (e.g., DC-blocking capacitors) during a pulsed post-program recovery period. This occurs by periodically activating control signals to turn on passive recovery switches to form a series of discharge pulses each dissipating a sub-threshold amount of charge. Such periodic pulsed dissipation may extend the duration of post-program recovery, but is not likely to be noticeable by the patient when the programming in the IPG changes from a first to a second program. Periodic pulsed dissipation of charge may also be used during a program, such as between stimulation pulses.
    Type: Application
    Filed: March 28, 2025
    Publication date: July 10, 2025
    Inventors: Emanuel Feldman, Jordi Parramon, Goran N. Marnfeldt, Adam T. Featherstone
  • Patent number: 12285603
    Abstract: The problem of a potentially high amount of supra-threshold charge passing through the patient's tissue at the end of an Implantable Pulse Generator (IPG) program is addressed by circuitry that periodically dissipates only small amount of the charge stored on capacitances (e.g., DC-blocking capacitors) during a pulsed post-program recovery period. This occurs by periodically activating control signals to turn on passive recovery switches to form a series of discharge pulses each dissipating a sub-threshold amount of charge. Such periodic pulsed dissipation may extend the duration of post-program recovery, but is not likely to be noticeable by the patient when the programming in the IPG changes from a first to a second program. Periodic pulsed dissipation of charge may also be used during a program, such as between stimulation pulses.
    Type: Grant
    Filed: January 12, 2023
    Date of Patent: April 29, 2025
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Jordi Parramon, Goran N. Marnfeldt, Adam T. Featherstone
  • Publication number: 20250121195
    Abstract: Techniques for sensing neural responses such as Evoked Compound Action Potentials (ECAPs) in an implantable stimulator device are disclosed. A first therapeutic pulse phase is followed by a charge recovery phase that includes at least one high-impedance passive charge recovery duration. The ECAP is sensed during the high-impedance passive charge recovery duration.
    Type: Application
    Filed: December 20, 2024
    Publication date: April 17, 2025
    Inventors: Kiran K. Gururaj, David M. Wagenbach, Philip L. Weiss, Emanuel Feldman
  • Patent number: 12257436
    Abstract: Techniques for sensing neural responses such as Evoked Compound Action Potentials (ECAPs) in an implantable stimulator device are disclosed. A first therapeutic pulse phase is followed by a charge recovery phase that includes at least one high-impedance passive charge recovery duration. The ECAP is sensed during the high-impedance passive charge recovery duration. The time period of the passive charge recovery is lengthened and the high-impedance passive recharge duration entirely overlaps the ECAP (i.e., the neural response duration) at the sensing electrode.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: March 25, 2025
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kiran K. Gururaj, David M. Wagenbach, Philip L. Weiss, Emanuel Feldman
  • Publication number: 20250018183
    Abstract: Recovery circuitry for passively recovering charge from capacitances at electrodes in an Implantable Pulse Generator (IPG) is disclosed. The passive recovery circuitry includes passive recovery switches intervening between each electrode node and a common reference voltage, and each switch is in series with a variable resistance that may be selected based on differing use models of the IPG. The passive recovery switches may also be controlled in different modes. For example, in a first mode, the only recovery switches closed after a stimulation pulse are those associated with electrodes used to provide stimulation. In a second mode, all recovery switches are closed after a stimulation pulse, regardless of the electrodes used to provide stimulation. In a third mode, all recovery switches are closed continuously, which can provide protection when the IPG is in certain environments (e.g., MRI), and which can also be used during stimulation therapy itself.
    Type: Application
    Filed: September 30, 2024
    Publication date: January 16, 2025
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Jordi Parramon
  • Patent number: 12151106
    Abstract: A new architecture is disclosed for an IPG having a master and slave electrode driver integrated circuits (ICs). The electrode outputs on the ICs are wired together. Each IC can be programmed to provide pulses with different frequencies. Active timing channels in master and slave ICs are programmed to provide the desired pulses, while shadow timing channels in the master and slave are programmed with the timing data from the active timing channels in the other IC so that each chip knows when the other is providing a pulse, so that each chip can disable its recovery circuitry so as not to defeat those pulses. In the event of pulse overlap at a given electrode, the currents provided by each chip will add at the affected electrode. Compliance voltage generation is dictated by an algorithm to find an optimal compliance voltage even during periods when pulses are overlapping.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: November 26, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Jordi Parramon, Paul J. Griffith, Jess Shi, Robert Tong, Goran Marnfeldt
  • Patent number: 12128234
    Abstract: Recovery circuitry for passively recovering charge from capacitances at electrodes in an Implantable Pulse Generator (IPG) is disclosed. The passive recovery circuitry includes passive recovery switches intervening between each electrode node and a common reference voltage, and each switch is in series with a variable resistance that may be selected based on differing use models of the IPG. The passive recovery switches may also be controlled in different modes. For example, in a first mode, the only recovery switches closed after a stimulation pulse are those associated with electrodes used to provide stimulation. In a second mode, all recovery switches are closed after a stimulation pulse, regardless of the electrodes used to provide stimulation. In a third mode, all recovery switches are closed continuously, which can provide protection when the IPG is in certain environments (e.g., MRI), and which can also be used during stimulation therapy itself.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: October 29, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Jordi Parramon
  • Publication number: 20240307675
    Abstract: An architecture is disclosed for an Implantable Pulse Generator having improved compliance voltage monitoring and adjustment software and hardware. Software specifies which stimulation pulses are to be measured as relevant to monitoring and adjusting the compliance voltage. Preferably, specifying such pulses occurs by setting a compliance monitoring instruction (e.g., a bit) in the program that defines the pulse, and the compliance monitor bit instruction may be set at a memory location defining a particular pulse phase during which the compliance voltage should be monitored. When a compliance monitor instruction issues, the active electrode node voltages are monitored and compared to desired ranges to determine whether they are high or low. Compliance logic operates on these high/low signals and processes them to decide whether to issue a compliance voltage interrupt to the microcontroller, which can then command the compliance voltage generator to increase or decrease the compliance voltage.
    Type: Application
    Filed: May 21, 2024
    Publication date: September 19, 2024
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Kenneth Hermann
  • Patent number: 12023482
    Abstract: An architecture is disclosed for an Implantable Pulse Generator having improved compliance voltage monitoring and adjustment software and hardware. Software specifies which stimulation pulses are to be measured as relevant to monitoring and adjusting the compliance voltage. Preferably, specifying such pulses occurs by setting a compliance monitoring instruction (e.g., a bit) in the program that defines the pulse, and the compliance monitor bit instruction may be set at a memory location defining a particular pulse phase during which the compliance voltage should be monitored. When a compliance monitor instruction issues, the active electrode node voltages are monitored and compared to desired ranges to determine whether they are high or low. Compliance logic operates on these high/low signals and processes them to decide whether to issue a compliance voltage interrupt to the microcontroller, which can then command the compliance voltage generator to increase or decrease the compliance voltage.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: July 2, 2024
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Kenneth Hermann
  • Publication number: 20230166103
    Abstract: The problem of a potentially high amount of supra-threshold charge passing through the patient's tissue at the end of an Implantable Pulse Generator (IPG) program is addressed by circuitry that periodically dissipates only small amount of the charge stored on capacitances (e.g., DC-blocking capacitors) during a pulsed post-program recovery period. This occurs by periodically activating control signals to turn on passive recovery switches to form a series of discharge pulses each dissipating a sub-threshold amount of charge. Such periodic pulsed dissipation may extend the duration of post-program recovery, but is not likely to be noticeable by the patient when the programming in the IPG changes from a first to a second program. Periodic pulsed dissipation of charge may also be used during a program, such as between stimulation pulses.
    Type: Application
    Filed: January 12, 2023
    Publication date: June 1, 2023
    Inventors: Emanuel Feldman, Jordi Parramon, Goran N. Marnfeldt, Adam T. Featherstone
  • Patent number: 11577073
    Abstract: The problem of a potentially high amount of supra-threshold charge passing through the patient's tissue at the end of an Implantable Pulse Generator (IPG) program is addressed by circuitry that periodically dissipates only small amount of the charge stored on capacitances (e.g., DC-blocking capacitors) during a pulsed post-program recovery period. This occurs by periodically activating control signals to turn on passive recovery switches to form a series of discharge pulses each dissipating a sub-threshold amount of charge. Such periodic pulsed dissipation may extend the duration of post-program recovery, but is not likely to be noticeable by the patient when the programming in the IPG changes from a first to a second program. Periodic pulsed dissipation of charge may also be used during a program, such as between stimulation pulses.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: February 14, 2023
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Jordi Parramon, Goran N. Marnfeldt, Adam T. Featherstone
  • Publication number: 20220387799
    Abstract: An electrical stimulation system includes at least one electrical stimulation lead having stimulation electrodes; and a processor coupled to the at least one electrical stimulation lead to perform actions, including: directing delivery of at least one stimulation pulse to tissue of a patient during each charge injection phase, where each consecutive pair of the charge injection phases is separated by a charge recovery phase; and, for at least one stimulation pulse: during delivery of the stimulation pulse, directing application of at least one charge recovery pulse to interrupt the delivery of the stimulation pulse, where each one of the at least one charge recovery pulse has a relative amplitude that is larger in magnitude than an amplitude of the stimulation pulse; and, after application of the charge recovery pulse, directing resumption of delivery of the stimulation pulse at the amplitude of the stimulation pulse.
    Type: Application
    Filed: June 6, 2022
    Publication date: December 8, 2022
    Inventors: Emanuel Feldman, Dheerendra Raghavendra Kashyap, Pujitha Weerakoon, Philip Leonard Weiss, Sarvani Grandhe
  • Publication number: 20220362560
    Abstract: An implantable medical device, such as an implantable pulse generator, includes a case; an integrated circuit device disposed within the case, the integrated circuit device including a temperature sensor; and a thermal coupling medium disposed between, and in contact with, the case and the integrated circuit device, wherein the thermal coupling medium is a solid, liquid, gel, or any combination thereof.
    Type: Application
    Filed: October 26, 2020
    Publication date: November 17, 2022
    Inventor: Emanuel Feldman
  • Publication number: 20220273953
    Abstract: A compliance voltage management algorithm is disclosed for managing the compliance voltage, VH, that powers the DAC circuitry in a stimulator device. A user can use a user interface associated with an external programming device to define a time-varying stimulation waveform to be programmed into the stimulator device. The algorithm analyzes the prescribed waveform and determines a number of groups of pulses that will be treated similarly from a VH management standpoint. Optimal compliance voltages are determined for each group, as are the rise and fall rates at which VH is able to change at transitions between groups. These rise or fall rates in VH are then used to set when the compliance voltage should increase or decrease. For example, the algorithm will automatically set VH to start rising in advance of a transition so that it is at the proper higher value when the transition occurs.
    Type: Application
    Filed: September 2, 2020
    Publication date: September 1, 2022
    Inventors: G. Karl Steinke, Adam T. Featherstone, Mary Kotchevar, Emanuel Feldman, Goran N. Marnfeldt, Kenneth Hermann, Chirag Shah
  • Publication number: 20220273946
    Abstract: Recovery circuitry for passively recovering charge from capacitances at electrodes in an Implantable Pulse Generator (IPG) is disclosed. The passive recovery circuitry includes passive recovery switches intervening between each electrode node and a common reference voltage, and each switch is in series with a variable resistance that may be selected based on differing use models of the IPG. The passive recovery switches may also be controlled in different modes. For example, in a first mode, the only recovery switches closed after a stimulation pulse are those associated with electrodes used to provide stimulation. In a second mode, all recovery switches are closed after a stimulation pulse, regardless of the electrodes used to provide stimulation. In a third mode, all recovery switches are closed continuously, which can provide protection when the IPG is in certain environments (e.g., MRI), and which can also be used during stimulation therapy itself.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Jordi Parramon
  • Publication number: 20220233866
    Abstract: Techniques for sensing neural responses such as Evoked Compound Action Potentials (ECAPs) in an implantable stimulator device are disclosed. A first therapeutic pulse phase is followed by a charge recovery phase that includes at least one high-impedance passive charge recovery duration. The ECAP is sensed during the high-impedance passive charge recovery duration. The time period of the passive charge recovery is lengthened and the high-impedance passive recharge duration entirely overlaps the ECAP (i.e., the neural response duration) at the sensing electrode.
    Type: Application
    Filed: August 4, 2020
    Publication date: July 28, 2022
    Inventors: Kiran K. Gururaj, David M. Wagenbach, Philip L. Weiss, Emanuel Feldman
  • Publication number: 20220193394
    Abstract: An architecture is disclosed for an Implantable Pulse Generator having improved compliance voltage monitoring and adjustment software and hardware. Software specifies which stimulation pulses are to be measured as relevant to monitoring and adjusting the compliance voltage. Preferably, specifying such pulses occurs by setting a compliance monitoring instruction (e.g., a bit) in the program that defines the pulse, and the compliance monitor bit instruction may be set at a memory location defining a particular pulse phase during which the compliance voltage should be monitored. When a compliance monitor instruction issues, the active electrode node voltages are monitored and compared to desired ranges to determine whether they are high or low. Compliance logic operates on these high/low signals and processes them to decide whether to issue a compliance voltage interrupt to the microcontroller, which can then command the compliance voltage generator to increase or decrease the compliance voltage.
    Type: Application
    Filed: March 10, 2022
    Publication date: June 23, 2022
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Kenneth Hermann
  • Patent number: 11364382
    Abstract: Recovery circuitry for passively recovering charge from capacitances at electrodes in an Implantable Pulse Generator (IPG) is disclosed. The passive recovery circuitry includes passive recovery switches intervening between each electrode node and a common reference voltage, and each switch is in series with a variable resistance that may be selected based on differing use models of the IPG. The passive recovery switches may also be controlled in different modes. For example, in a first mode, the only recovery switches closed after a stimulation pulse are those associated with electrodes used to provide stimulation. In a second mode, all recovery switches are closed after a stimulation pulse, regardless of the electrodes used to provide stimulation. In a third mode, all recovery switches are closed continuously, which can provide protection when the IPG is in certain environments (e.g., MRI), and which can also be used during stimulation therapy itself.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: June 21, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Jordi Parramon
  • Patent number: 11364378
    Abstract: Disclosed herein are circuits and methods for a multi-electrode implantable stimulator device incorporating one decoupling capacitor in the current path established via at least one cathode electrode and at least one anode electrode. In one embodiment, the decoupling capacitor may be hard-wired to a dedicated anode on the device. The cathodes are selectively activatable via stimulation switches. In another embodiment, any of the electrodes on the devices can be selectively activatable as an anode or cathode. In this embodiment, the decoupling capacitor is placed into the current path via selectable anode and cathode stimulation switches. Regardless of the implementation, the techniques allow for the benefits of capacitive decoupling without the need to associate decoupling capacitors with every electrode on the multi-electrode device, which saves space in the body of the device.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: June 21, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Kiran Nimmagadda, Emanuel Feldman, Yuping He
  • Publication number: 20220161033
    Abstract: An architecture is disclosed for an Implantable Pulse Generator having improved compliance voltage monitoring and adjustment software and hardware. Software specifies which stimulation pulses are to be measured as relevant to monitoring and adjusting the compliance voltage. During compliance voltage monitoring, “high-side” anode electrode node voltages referenced to the compliance voltage are considered as are “low-side” cathode electrode node voltages referenced to ground. Translation stages are used to convert only the anode electrode node voltages to ground as low-side signals. This allows compliance voltage monitoring and adjustment to occur using only low-side signals, which eases sensing and reduces design complexity.
    Type: Application
    Filed: October 19, 2021
    Publication date: May 26, 2022
    Inventors: Emanuel Feldman, Goran N. Marnfeldt