Patents by Inventor Emanuel Feldman

Emanuel Feldman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9855438
    Abstract: Battery management circuitry for an implantable medical device such as an implantable neurostimulator is described. The circuitry has a T-shape with respect to the battery terminal, with charging circuitry coupled between rectifier circuitry and the battery terminal on one side of the T, and load isolation circuitry coupled between the load and the battery terminal on the other side. The load isolation circuitry can comprise two switches wired in parallel. An undervoltage fault condition opens both switches to isolate the battery terminal from the load to prevent further dissipation of the battery. Other fault conditions will open only one the switches leaving the other closed to allow for reduced power to the load to continue implant operations albeit at safer low-power levels. The battery management circuitry can be fixed in a particular location on an integrated circuit which also includes for example the stimulation circuitry for the electrodes.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: January 2, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Goran N. Marnfeldt, Robert Ozawa, Emanuel Feldman, Dave Peterson, Yuping He
  • Publication number: 20170340886
    Abstract: Disclosed herein are circuits and methods for a multi-electrode implantable stimulator device incorporating one decoupling capacitor in the current path established via at least one cathode electrode and at least one anode electrode. In one embodiment, the decoupling capacitor may be hard-wired to a dedicated anode on the device. The cathodes are selectively activatable via stimulation switches. In another embodiment, any of the electrodes on the devices can be selectively activatable as an anode or cathode. In this embodiment, the decoupling capacitor is placed into the current path via selectable anode and cathode stimulation switches. Regardless of the implementation, the techniques allow for the benefits of capacitive decoupling without the need to associate decoupling capacitors with every electrode on the multi-electrode device, which saves space in the body of the device.
    Type: Application
    Filed: August 11, 2017
    Publication date: November 30, 2017
    Inventors: Jordi Parramon, Kiran Nimmagadda, Emanuel Feldman, Yuping He
  • Patent number: 9795793
    Abstract: Architectures for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. A parallel bus operating in accordance with a communication protocol couples the ICs, and certain functional blocks not needed in the slave are disabled. Stimulation parameters are loaded via the bus into each IC, and a stimulation enable command is issued on the bus to ensure simultaneous stimulation from the electrodes on both ICs. Clocking strategies are also disclosed to allow clocking of the master and slave ICs to be independently controlled, and to ensure that relevant internal and bus clocks used in the system are synchronized.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: October 24, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Emanuel Feldman, Paul J. Griffith, Jess W. Shi
  • Patent number: 9782588
    Abstract: Sample and hold circuitry for monitoring electrodes and other voltages in an implantable neurostimulator is disclosed. The sample and hold circuitry in one embodiment contains multiplexers to selected appropriate voltages and to pass them to two storage capacitors during two different measurement phases. The capacitors are in a later stage serially connected to add the two voltages stored on the capacitors, and voltages present at the top and bottom of the serial connection are then input to a differential amplifier to compute their difference. The sample and hold circuitry is particularly useful in calculating the resistance between two electrodes, and is further particularly useful when resistance is measured using a biphasic pulse. The sample and hold circuitry is flexible, and can be used to measure other voltages of interest during biphasic or monophasic pulsing.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: October 10, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jess W. Shi, Emanuel Feldman, Jordi Parramon
  • Patent number: 9737713
    Abstract: Disclosed herein are circuits and methods for a multi-electrode implantable stimulator device incorporating one decoupling capacitor in the current path established via at least one cathode electrode and at least one anode electrode. In one embodiment, the decoupling capacitor may be hard-wired to a dedicated anode on the device. The cathodes are selectively activatable via stimulation switches. In another embodiment, any of the electrodes on the devices can be selectively activatable as an anode or cathode. In this embodiment, the decoupling capacitor is placed into the current path via selectable anode and cathode stimulation switches. Regardless of the implementation, the techniques allow for the benefits of capacitive decoupling without the need to associate decoupling capacitors with every electrode on the multi-electrode device, which saves space in the body of the device.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: August 22, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Kiran Nimmagadda, Emanuel Feldman, Yuping He
  • Publication number: 20170232265
    Abstract: Electrode voltage monitoring circuitry for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. Electrodes voltages on the slave IC are routed to the master IC, and thus the master IC can monitor both electrode voltages on the slave as well as electrode voltages on the master. Such voltages can be monitored for a variety of purposes, and in particular use of such voltage is disclosed for determining the resistance between electrodes and to set a compliance voltage for stimulation.
    Type: Application
    Filed: May 5, 2017
    Publication date: August 17, 2017
    Inventors: Jordi Parramon, Jess W. Shi, Emanuel Feldman
  • Publication number: 20170216600
    Abstract: Disclosed is a new architecture for an IPG having a master and slave electrode driver integrated circuits. The electrode outputs on the integrated circuits are wired together. Each integrated circuit can be programmed to provide pulses with different frequencies. Active timing channels in each of the master and slave integrated circuits are programmed to provide the desired pulses, while shadow timing channels in the master and slave are programmed with the timing data from the active timing channels in the other integrated circuit so that each chip knows when the other is providing a pulse, so that each chip can disable its recovery circuitry so as not to defeat those pulses. In the event of pulse overlap at a given electrode, the currents provided by each chip will add at the affected electrode. Compliance voltage generation is dictated by an algorithm to find an optimal compliance voltage even during periods when pulses are overlapping.
    Type: Application
    Filed: April 19, 2017
    Publication date: August 3, 2017
    Inventors: Emanuel Feldman, Jordi Parramon, Paul J. Griffith, Jess Shi, Robert Tong, Goran Marnfeldt
  • Publication number: 20170143970
    Abstract: Sample and hold circuitry for monitoring electrodes and other voltages in an implantable neurostimulator is disclosed. The sample and hold circuitry in one embodiment contains multiplexers to selected appropriate voltages and to pass them to two storage capacitors during two different measurement phases. The capacitors are in a later stage serially connected to add the two voltages stored on the capacitors, and voltages present at the top and bottom of the serial connection are then input to a differential amplifier to compute their difference. The sample and hold circuitry is particularly useful in calculating the resistance between two electrodes, and is further particularly useful when resistance is measured using a biphasic pulse. The sample and hold circuitry is flexible, and can be used to measure other voltages of interest during biphasic or monophasic pulsing.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Inventors: Jess W. Shi, Emanuel Feldman, Jordi Parramon
  • Patent number: 9656081
    Abstract: Disclosed is a new architecture for an IPG having a master and slave electrode driver integrated circuits. The electrode outputs on the integrated circuits are wired together. Each integrated circuit can be programmed to provide pulses with different frequencies. Active timing channels in each of the master and slave integrated circuits are programmed to provide the desired pulses, while shadow timing channels in the master and slave are programmed with the timing data from the active timing channels in the other integrated circuit so that each chip knows when the other is providing a pulse, so that each chip can disable its recovery circuitry so as not to defeat those pulses. In the event of pulse overlap at a given electrode, the currents provided by each chip will add at the affected electrode. Compliance voltage generation is dictated by an algorithm to find an optimal compliance voltage even during periods when pulses are overlapping.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: May 23, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Jordi Parramon, Paul J. Griffith, Jess Shi, Robert Tong, Goran Marnfeldt
  • Patent number: 9643016
    Abstract: Electrode voltage monitoring circuitry for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. Electrodes voltages on the slave IC are routed to the master IC, and thus the master IC can monitor both electrode voltages on the slave as well as electrode voltages on the master. Such voltages can be monitored for a variety of purposes, and in particular use of such voltage is disclosed for determining the resistance between electrodes and to set a compliance voltage for stimulation.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: May 9, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Jess W. Shi, Emanuel Feldman
  • Patent number: 9561365
    Abstract: Sample and hold circuitry for monitoring electrodes and other voltages in an implantable neurostimulator is disclosed. The sample and hold circuitry in one embodiment contains multiplexers to selected appropriate voltages and to pass them to two storage capacitors during two different measurement phases. The capacitors are in a later stage serially connected to add the two voltages stored on the capacitors, and voltages present at the top and bottom of the serial connection are then input to a differential amplifier to compute their difference. The sample and hold circuitry is particularly useful in calculating the resistance between two electrodes, and is further particularly useful when resistance is measured using a biphasic pulse. The sample and hold circuitry is flexible, and can be used to measure other voltages of interest during biphasic or monophasic pulsing.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: February 7, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jess W. Shi, Emanuel Feldman, Jordi Parramon
  • Publication number: 20160303368
    Abstract: A method and system of providing therapy to a patient implanted with an array of electrodes is provided. A train of electrical stimulation pulses is conveyed within a stimulation timing channel between a group of the electrodes to stimulate neural tissue, thereby providing continuous therapy to the patient. Electrical parameter is sensed within a sensing timing channel using at least one of the electrodes, wherein the first stimulation timing channel and sensing timing channel are coordinated, such that the electrical parameter is sensed during the conveyance of the pulse train within time slots that do not temporally overlap any active phase of the stimulation pulses.
    Type: Application
    Filed: June 28, 2016
    Publication date: October 20, 2016
    Inventors: Jordi Parramon, Emanuel Feldman, Jess Weiqian Shi
  • Publication number: 20160287886
    Abstract: Battery management circuitry for an implantable medical device such as an implantable neurostimulator is described. The circuitry has a T-shape with respect to the battery terminal, with charging circuitry coupled between rectifier circuitry and the battery terminal on one side of the T, and load isolation circuitry coupled between the load and the battery terminal on the other side. The load isolation circuitry can comprise two switches wired in parallel. An undervoltage fault condition opens both switches to isolate the battery terminal from the load to prevent further dissipation of the battery. Other fault conditions will open only one the switches leaving the other closed to allow for reduced power to the load to continue implant operations albeit at safer low-power levels. The battery management circuitry can be fixed in a particular location on an integrated circuit which also includes for example the stimulation circuitry for the electrodes.
    Type: Application
    Filed: June 14, 2016
    Publication date: October 6, 2016
    Inventors: Jordi Parramon, Goran N. Marnfeldt, Robert Ozawa, Emanuel Feldman, Dave Peterson, Yuping He
  • Publication number: 20160220830
    Abstract: Electrode voltage monitoring circuitry for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. Electrodes voltages on the slave IC are routed to the master IC, and thus the master IC can monitor both electrode voltages on the slave as well as electrode voltages on the master. Such voltages can be monitored for a variety of purposes, and in particular use of such voltage is disclosed for determining the resistance between electrodes and to set a compliance voltage for stimulation.
    Type: Application
    Filed: April 6, 2016
    Publication date: August 4, 2016
    Inventors: Jordi Parramon, Jess W. Shi, Emanuel Feldman
  • Patent number: 9399132
    Abstract: A method and system of providing therapy to a patient implanted with an array of electrodes is provided. A train of electrical stimulation pulses is conveyed within a stimulation timing channel between a group of the electrodes to stimulate neural tissue, thereby providing continuous therapy to the patient. Electrical parameter is sensed within a sensing timing channel using at least one of the electrodes, wherein the first stimulation timing channel and sensing timing channel are coordinated, such that the electrical parameter is sensed during the conveyance of the pulse train within time slots that do not temporally overlap any active phase of the stimulation pulses.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: July 26, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Emanuel Feldman, Jess Weiqian Shi
  • Patent number: 9393433
    Abstract: Battery management circuitry for an implantable medical device such as an implantable neurostimulator is described. The circuitry has a T-shape with respect to the battery terminal, with charging circuitry coupled between rectifier circuitry and the battery terminal on one side of the T, and load isolation circuitry coupled between the load and the battery terminal on the other side. The load isolation circuitry can comprise two switches wired in parallel. An undervoltage fault condition opens both switches to isolate the battery terminal from the load to prevent further dissipation of the battery. Other fault conditions will open only one the switches leaving the other closed to allow for reduced power to the load to continue implant operations albeit at safer low-power levels. The battery management circuitry can be fixed in a particular location on an integrated circuit which also includes for example the stimulation circuitry for the electrodes.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: July 19, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Goran N. Marnfeldt, Robert Ozawa, Emanuel Feldman, Dave Peterson
  • Patent number: 9397639
    Abstract: Timer circuitry completely formable in an integrated circuit (IC) for generating a clock signal in an implantable medical device is disclosed. The timer circuitry can be formed on the same Application Specific Integrated Circuit typically used in the implant, and requires no external components. The timer circuitry comprises modification to a traditional astable timer circuit. A resistance in the disclosed timer circuit can be trimmed to adjust the frequency of the clock signal produced, thus allowing that frequency to be set to a precise value during manufacturing. Precision components are not needed in the RC circuit, which instead are used to set the rough value of the frequency of the clock signal. A regulator produces a power supply for the timer circuitry from a main power supply (Vcc), producing a clock signal with a frequency that is generally independent of temperature and Vcc fluctuations.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: July 19, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Goran N. Marnfeldt, Jordi Parramon
  • Publication number: 20160184591
    Abstract: Disclosed is a new architecture for an IPG having a master and slave electrode driver integrated circuits. The electrode outputs on the integrated circuits are wired together. Each integrated circuit can be programmed to provide pulses with different frequencies. Active timing channels in each of the master and slave integrated circuits are programmed to provide the desired pulses, while shadow timing channels in the master and slave are programmed with the timing data from the active timing channels in the other integrated circuit so that each chip knows when the other is providing a pulse, so that each chip can disable its recovery circuitry so as not to defeat those pulses. In the event of pulse overlap at a given electrode, the currents provided by each chip will add at the affected electrode. Compliance voltage generation is dictated by an algorithm to find an optimal compliance voltage even during periods when pulses are overlapping.
    Type: Application
    Filed: March 7, 2016
    Publication date: June 30, 2016
    Inventors: Emanuel Feldman, Jordi Parramon, Paul J. Griffith, Jess Shi, Robert Tong, Goran Marnfeldt
  • Patent number: 9339660
    Abstract: An implantable medical device (IMD) is disclosed having one or more magnetic field sensors for measuring a strength of a magnetic charging field provided by an external charger and used to provide operational power to the IMD, for example, to charge its battery. The measured field strength data, or derivations of such data, are telemetered to the external charger, which further process the received data if necessary and can inform a user whether alignment between the external charger and IMD is sufficient, a misalignment direction, and/or a misalignment distance, so that the user can attempt to improve the alignment of the external charger. The one or more sensors are preferably placed at or equidistantly around a center axis of the IMD's charging coil. However, the sensors may be placed at any number of locations in the IPG, and at different distances from the center axis.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: May 17, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Jordi Parramon, Robert D. Ozawa
  • Patent number: 9314638
    Abstract: Electrode voltage monitoring circuitry for an implantable neurostimulator system having a plurality of electrode-driver integrated circuits (ICs) in provided. Electrodes from either or both ICs can be chosen to provide stimulation, and one of the IC acts as the master while the other acts as the slave. Electrodes voltages on the slave IC are routed to the master IC, and thus the master IC can monitor both electrode voltages on the slave as well as electrode voltages on the master. Such voltages can be monitored for a variety of purposes, and in particular use of such voltage is disclosed for determining the resistance between electrodes and to set a compliance voltage for stimulation.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: April 19, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Jess W. Shi, Emanuel Feldman