Patents by Inventor Emanuel Peled

Emanuel Peled has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11050051
    Abstract: A composition-of-matter comprising a plurality of particles is disclosed herein, the particles comprising a substance reversibly releasing an alkali metal while decreasing in volume and absorbing the alkali metal while increasing in volume. Some or all of the particles are encapsulated within a volume enclosed by a shell or matrix which conducts cations of the alkali metal, wherein a volume of the substance upon maximal absorption of the alkali metal does not exceed the volume enclosed by a shell or matrix. Further disclosed herein is a process for preparing a composition-of-matter by coating particles comprising the aforementioned substance with a conductor of cations of the alkali metal, when the substance is saturated with the alkali metal, as well as electrochemical half cells and batteries including the composition-of-matter.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: June 29, 2021
    Assignee: Ramot at Tel-Aviv University Ltd.
    Inventors: Emanuel Peled, Meital Alon, Diana Golodnitsky
  • Patent number: 10476076
    Abstract: A composition-of-matter comprising a plurality of particles is disclosed herein, the particles comprising a compound (e.g., an element or a mixture of elements) which forms an alloy with an alkali metal and/or an alloy of an alkali metal with said compound. The alloy is characterized by reversibly releasing the alkali metal and absorbing the alkali metal. Some or all of the particles are encapsulated within a volume enclosed by a shell or matrix which conducts cations of the alkali metal, wherein a volume of the alloy upon maximal absorption of the alkali metal does not exceed the volume enclosed by a shell or matrix. Further disclosed herein is a process of preparing a composition-of-matter, which is effected by coating particles comprising an alloy saturated with the alkali metal with a conductor of cations of the alkali metal, as well as electrochemical half cells and batteries including the composition-of-matter.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: November 12, 2019
    Assignee: Ramot at Tel-Aviv University Ltd.
    Inventors: Emanuel Peled, Diana Golodnitsky, Kathrin Freedman, Keren Goldshtein, Meital Alon
  • Patent number: 10403889
    Abstract: The present invention provides anodes comprising an electrically conductive substrate, comprising at least one non-uniform surface; and a random network of silicon nanowires (Si NWs) chemically grown on said at least one non-uniform surface of the substrate, wherein the Si NWs have at least about 30% amorphous morphology, and methods of manufacturing of the anodes. Further provided are lithium ion batteries comprising said anodes.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: September 3, 2019
    Assignee: RAMOT AT TEL-AVIV UNLVERSITY LTD.
    Inventors: Emanuel Peled, Fernando Patolsky, Diana Golodnitsky, Kathrin Freedman, Guy Davidi, Dan Schneier
  • Publication number: 20190006122
    Abstract: The present invention provides electrochemical energy storage devices, comprising at least one electrochemical cell comprising a first porous electrode, a second porous electrode, an aqueous or non-aqueous electrolyte being in contact with said first porous and second porous electrodes and a porous separator separating the first porous electrode from the second porous electrode, wherein: (a) the electrolyte comprises a first dissolved salt comprising a trivalent post-transition metal cation; and/or (b) the first porous electrode, the second porous electrode or both electrodes comprise submicron particles of a precipitated salt comprising a cation selected from the group consisting of Pb2+, Sn2+, and Sb2+; and/or (c) the second porous electrode comprises pyrite (FeS2) submicron particles. Further provided are methods of formation of the electrochemical energy storage devices.
    Type: Application
    Filed: June 27, 2016
    Publication date: January 3, 2019
    Inventors: Emanuel PELED, Meital GOOR DAR, Tal CHEN
  • Patent number: 9892865
    Abstract: A double-layer capacitor (DLC) (10), including an electrolyte (20) having an electrochemically active species (28) dissolved therein. The electrochemically active species consists of a material that undergoes oxidation at one electrode and undergoes reduction at another electrode during charge and discharge processes of the DLC. The DLC also includes first and second electrodes (12, 14), consisting of a porous material (18, 26) in contact with the electrolyte. There is a porous separator (16) in the electrolyte separating the first electrode from the second electrode.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: February 13, 2018
    Assignee: RAMOT AT TEL AVIV UNIVERSITY LTD.
    Inventors: Emanuel Peled, Meital Goor Dar
  • Patent number: 9882223
    Abstract: A catalyst composition comprising at least one precious metal, wherein the catalyst composition is capable of catalyzing, in the presence of a halogen ion or a mixture of halogen ions, a charging reaction and a discharging reaction in a regenerative fuel cell. This disclosure relates to electrodes comprising those catalysts that are useful in fuel cells. The catalysts are active towards hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) and porous electrodes are made in a process designed to control their porosity. The catalysts and electrodes are employed in regenerative fuel cells comprising hydrogen and halogen acid or mixture of halogen acids. The catalysts are particularly useful in hydrogen/bromine reduction/oxidation reactions. The catalysts exhibit highly acceptable life and performance.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: January 30, 2018
    Assignee: RAMOT AT TEL-AVIV UNIVERSITY LTD.
    Inventors: Emanuel Peled, Arnon Blum, Adi Aharon, Nina Travitsky, Yaron Konra, Kobby Saadi, Vladimir Zel, Meital Goor, Meital Alon, Roy Gorenshtein
  • Publication number: 20170309903
    Abstract: The present invention provides anodes comprising an electrically conductive substrate, comprising at least one non-uniform surface; and a random network of silicon nanowires (Si NWs) chemically grown on said at least one non-uniform surface of the substrate, wherein the Si NWs have at least about 30% amorphous morphology, and methods of manufacturing of the anodes. Further provided are lithium ion batteries comprising said anodes.
    Type: Application
    Filed: October 21, 2015
    Publication date: October 26, 2017
    Inventors: Emanuel PELED, Fernando PATOLSKY, Diana GOLODNITSKY, Kathrin FREEDMAN, Guy DAVIDI, Dan SCHNEIER
  • Publication number: 20170170473
    Abstract: A composition-of-matter comprising a plurality of particles is disclosed herein, the particles comprising a compound (e.g., an element or a mixture of elements) which forms an alloy with an alkali metal and/or an alloy of an alkali metal with said compound. The alloy is characterized by reversibly releasing the alkali metal and absorbing the alkali metal. Some or all of the particles are encapsulated within a volume enclosed by a shell or matrix which conducts cations of the alkali metal, wherein a volume of the alloy upon maximal absorption of the alkali metal does not exceed the volume enclosed by a shell or matrix. Further disclosed herein is a process of preparing a composition-of-matter, which is effected by coating particles comprising an alloy saturated with the alkali metal with a conductor of cations of the alkali metal, as well as electrochemical half cells and batteries including the composition-of-matter.
    Type: Application
    Filed: February 3, 2015
    Publication date: June 15, 2017
    Inventors: Emanuel PELED, Diana GOLODNITSKY, Kathrin FREEDMAN, Keren GOLDSHTEIN, Meital ALON
  • Publication number: 20170162864
    Abstract: A composition-of-matter comprising a plurality of particles is disclosed herein, the particles comprising a substance reversibly releasing an alkali metal while decreasing in volume and absorbing the alkali metal while increasing in volume. Some or all of the particles are encapsulated within a volume enclosed by a shell or matrix which conducts cations of the alkali metal, wherein a volume of the substance upon maximal absorption of the alkali metal does not exceed the volume enclosed by a shell or matrix. Further disclosed herein is a process for preparing a composition-of-matter by coating particles comprising the aforementioned substance with a conductor of cations of the alkali metal, when the substance is saturated with the alkali metal, as well as electrochemical half cells and batteries including the composition-of-matter.
    Type: Application
    Filed: February 3, 2015
    Publication date: June 8, 2017
    Inventors: Emanuel PELED, Meital ALON, Diana GOLODNITSKY
  • Patent number: 9627693
    Abstract: This disclosure relates to energy storage and generation systems, e.g., combination of flow battery and hydrogen fuel cell, that exhibit operational stability in harsh environments, e.g., both charging and discharging reactions in a regenerative fuel cell in the presence of a halogen ion or a mixture of halogen ions. This disclosure also relates to energy storage and generation systems that are capable of conducting both hydrogen evolution reactions (HERs) and hydrogen oxidation reactions (HORs) in the same system. This disclosure further relates to energy storage and generation systems having low cost, fast response time, and acceptable life and performance.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: April 18, 2017
    Assignee: RAMOT AT TEL-AVIV UNIVERSITY LTD.
    Inventors: Emanuel Peled, Arnon Blum, Adi Aharon, Nina Travitsky, Yaron Konra, Ido Tsamir, Vladimir Zel, Kobby Saadi, Meital Alon, Roy Gorenshtein
  • Patent number: 9331342
    Abstract: This disclosure relates to electrochemical systems, e.g., a combination of an electrical energy source and an electrical energy storage system having a regenerative fuel cell system, that exhibit operational stability in harsh environments, e.g., both charging and discharging reactions in a regenerative fuel cell in the presence of an acid or a mixture of acids, or a halogen ion or a mixture of halogen ions. The electrochemical systems are capable of conducting both hydrogen evolution reactions (HERs) and hydrogen oxidation reactions (HORs) in the same system. The electrochemical systems have low cost, fast response time, and acceptable life and performance. This disclosure also relates to methods of operating the electrochemical systems containing a regenerative fuel cell system.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: May 3, 2016
    Assignee: RAMOT AT TEL-AVIV UNIVERSITY LTD.
    Inventors: Emanuel Peled, Arnon Blum
  • Publication number: 20160118684
    Abstract: Methods for forming three-layer thin-film battery (TFB) structures by sequential electrophoretic deposition (EPD) on a single conductive substrate. The TFBs may be two-dimensional or three-dimensional. The sequential EPD includes EPD of a first battery electrode followed by EPD of a porous separator on the first electrode and by EPD of a second battery electrode on the porous separator. In some embodiments of a Li or Li-ion TFB, the separator includes a Li ion conducting solid. In some embodiments of a Li or Li-ion TFB, the separator includes an inorganic porous solid rendered ionically conductive by impregnation with a liquid or polymer. In some embodiments, the TFBs are coated and sealed with an EPDd PEEK layer.
    Type: Application
    Filed: January 1, 2016
    Publication date: April 28, 2016
    Inventors: Diana Golodnitsky, Emanuel Peled, Menachem Nathan, Gilat Ardel, Hadar Mazor-Shafir, Roni Hadar, Svetlana Menkin-Bachbut, Tania Ripenbein, Kathrin Freedman
  • Patent number: 9269997
    Abstract: An energy storage cell (20) including: an anode (40) formed of a molten alkali metal; an air cathode (60); and an electrolyte medium (50) located between the anode and cathode.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: February 23, 2016
    Assignee: RAMOT AT TEL AVIV UNIVERSITY LTD.
    Inventors: Emanuel Peled, Diana Golodnitsky, Hadar Mazor-Shafir, Meital Goor Dar, Shlomo Avshalomov
  • Patent number: 9249522
    Abstract: Methods for forming three-layer thin-film battery (TFB) structures by sequential electrophoretic deposition (EPD) on a single conductive substrate. The TFBs may be two-dimensional or three-dimensional. The sequential EPD includes EPD of a first battery electrode followed by EPD of a porous separator on the first electrode and by EPD of a second battery electrode on the porous separator. In some embodiments of a Li or Li-ion TFB, the separator includes a Li ion conducting solid. In some embodiments of a Li or Li-ion TFB, the separator includes an inorganic porous solid rendered ionically conductive by impregnation with a liquid or polymer. In some embodiments, the TFBs are coated and sealed with an EPDd PEEK layer.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: February 2, 2016
    Assignee: Ramot at Tel-Aviv University Ltd.
    Inventors: Diana Golodnitsky, Emanuel Peled, Menachem Nathan, Gilat Ardel, Hadar Mazor-Shafir, Roni Hadar, Svetlana Menkin-Bachbut, Tania Ripenbein, Kathrin Freedman
  • Publication number: 20150279575
    Abstract: A double-layer capacitor (DLC) (10), including an electrolyte (20) having an electrochemically active species (28) dissolved therein. The electrochemically active species consists of a material that undergoes oxidation at one electrode and undergoes reduction at another electrode during charge and discharge processes of the DLC. The DLC also includes first and second electrodes (12, 14), consisting of a porous material (18, 26) in contact with the electrolyte. There is a porous separator (16) in the electrolyte separating the first electrode from the second electrode.
    Type: Application
    Filed: September 30, 2013
    Publication date: October 1, 2015
    Inventors: Emanuel Peled, Meital Goor Dar
  • Patent number: 9012104
    Abstract: A bipolar plate and regenerative fuel cell stacks including the bipolar plates and membrane electrode assemblies (MEAs) alternately stacked. The bipolar plate comprises a plate main body formed of an electrically conductive material. The plate main body has a first surface and a second surface opposite the first surface. Each surface has reaction flow channels through which fluids pass. The reaction flow channels on the first surface have a plurality of ribs therebetween forming an interdigitate flow field pattern. The reaction flow channels on the second surface have a plurality of ribs therebetween forming an interdigitate flow field pattern or a flow field pattern different from an interdigitate flow field pattern, e.g., a serpentine flow field pattern.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: April 21, 2015
    Assignee: Ramot At Tel-Aviv University Ltd.
    Inventors: Emanuel Peled, Arnon Blum, Adi Aharon, Yaron Konra, Vladimir Zel, Kobby Saadi
  • Patent number: 8968961
    Abstract: A process for producing proton-conducting membrane, the process comprising: mixing (i) 5% to 60% by volume of an electrically nonconductive inorganic powder having a good acid absorption capacity, the powder comprising essentially nanosize particles; (ii) 5% to 50% by volume of a polymeric binder that is chemically compatible with acid, oxygen and the fuel; and (iii) 10 to 90% by volume of an acid or aqueous acid solution, wherein the mixing is conducted at various rate steps, thereby producing a proton-conducting mixture; continuously casting the proton-conducting mixture on rolled paper, non-woven matrix or the like at ambient temperature; drying the casted proton-conducting mixture at a temperature of greater than 100° C.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: March 3, 2015
    Assignee: Ramot at Tel-Aviv University Ltd.
    Inventors: Emanuel Peled, Arnon Blum, Adi Aharon
  • Publication number: 20130244102
    Abstract: Methods for forming three-layer thin-film battery (TFB) structures by sequential electrophoretic deposition (EPD) on a single conductive substrate. The TFBs may be two-dimensional or three-dimensional. The sequential EPD includes EPD of a first battery electrode followed by EPD of a porous separator on the first electrode and by EPD of a second battery electrode on the porous separator. In some embodiments of a Li or Li-ion TFB, the separator includes a Li ion conducting solid. In some embodiments of a Li or Li-ion TFB, the separator includes an inorganic porous solid rendered ionically conductive by impregnation with a liquid or polymer. In some embodiments, the TFBs are coated and sealed with an EPDd PEEK layer.
    Type: Application
    Filed: December 5, 2011
    Publication date: September 19, 2013
    Applicant: RAMOT AT TEL-AVIV UNIVERSITY LTD.
    Inventors: Diana Golodnitsky, Emanuel Peled, Menachem Nathan, Gilat Ardel, Hadar Mazor-Shafir, Roni Hadar, Svetlana Menkin-Bachbut, Tania Ripenbein, Kathrin Freedman
  • Publication number: 20130157149
    Abstract: An energy storage cell (20) including: an anode (40) formed of a molten alkali metal; an air cathode (60); and an electrolyte medium (50) located between the anode and cathode.
    Type: Application
    Filed: May 31, 2011
    Publication date: June 20, 2013
    Applicant: RAMOT AT TEL AVIV UNIVERSITY LTD.
    Inventors: Emanuel Peled, Diana Golodnitsky, Hadar Mazor-Shafir, Meital Goor Dar, Shlomo Avshalomov
  • Publication number: 20120312696
    Abstract: A process for producing proton-conducting membrane, the process comprising: mixing (i) 5% to 60% by volume of an electrically nonconductive inorganic powder having a good acid absorption capacity, the powder comprising essentially nanosize particles; (ii) 5% to 50% by volume of a polymeric binder that is chemically compatible with acid, oxygen and the fuel; and (iii) 10 to 90% by volume of an acid or aqueous acid solution, wherein the mixing is conducted at various rate steps, thereby producing a proton-conducting mixture; continuously casting the proton-conducting mixture on rolled paper, non-woven matrix or the like at ambient temperature; drying the casted proton-conducting mixture at a temperature of greater than 100° C.
    Type: Application
    Filed: January 24, 2011
    Publication date: December 13, 2012
    Inventors: Emanuel Peled, Arnon Blum, Adi Aharon