Patents by Inventor Emre Alptekin

Emre Alptekin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9349836
    Abstract: After formation of gate structures over semiconductor fins and prior to formation of raised active regions, a directional ion beam is employed to form a dielectric material portion on end walls of semiconductor fins that are perpendicular to the lengthwise direction of the semiconductor fins. The angle of the directional ion beam is selected to be with a vertical plane including the lengthwise direction of the semiconductor fins, thereby avoiding formation of the dielectric material portion on lengthwise sidewalls of the semiconductor fins. Selective epitaxy of semiconductor material is performed to grow raised active regions from sidewall surfaces of the semiconductor fins. Optionally, horizontal portions of the dielectric material portion may be removed prior to the selective epitaxy process. Further, the dielectric material portion may optionally be removed after the selective epitaxy process.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: May 24, 2016
    Assignee: International Business Machines Corporation
    Inventors: Emre Alptekin, Sameer H. Jain, Viraj Y. Sardesai, Cung D. Tran, Reinaldo A. Vega
  • Patent number: 9337041
    Abstract: Capacitive coupling between a gate electrode and underlying portions of the source and drain regions can be enhanced while suppressing capacitive coupling between the gate electrode and laterally spaced elements such as contact via structures for the source and drain regions. A transistor including a gate electrode and source and drain regions is formed employing a disposable gate spacer. The disposable gate spacer is removed to form a spacer cavity, which is filled with an anisotropic dielectric material to form an anisotropic gate spacer. The anisotropic dielectric material is aligned with an electrical field such that lengthwise directions of the molecules of the anisotropic dielectric material are aligned vertically within the spacer cavity. The anisotropic gate spacer provides a higher dielectric constant along the vertical direction and a lower dielectric constant along the horizontal direction.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: May 10, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Emre Alptekin, Hari V. Mallela, Reinaldo Vega
  • Patent number: 9331166
    Abstract: Angled directional ion beams are directed to sidewalls of a gate structure that straddles at least one semiconductor fin. The directions of the angled directional ion beams are contained within a vertical plane that is parallel to the sidewalls of the at least one semiconductor. A pair of gate spacers are formed on sidewalls of the gate structure by accumulation of the deposited dielectric material from the angled directional ion beams and without use of an anisotropic etch, while the sidewalls of the semiconductor fins parallel to the directional ion beams remain physically exposed. A selective epitaxy process can be performed to form raised active regions by growing a semiconductor material from the sidewalls of the semiconductor fins.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: May 3, 2016
    Assignee: International Business Machines Corporation
    Inventors: Emre Alptekin, Sameer H. Jain, Viraj Y. Sardesai, Cung D. Tran, Reinaldo A. Vega
  • Publication number: 20160118298
    Abstract: Contact openings are formed into a dielectric material exposing a surface portion of a semiconductor substrate. An interfacial oxide layer is then formed in each contact opening and on an exposed surface portion of the interfacial oxide layer. A NiPt alloy layer is formed within each opening and on the exposed surface portion of each interfacial oxide layer. An anneal is then performed that forms a contact structure of, from bottom to top, a nickel disilicide alloy body having an inverted pyramidal shape, a Pt rich silicide cap region and an oxygen rich region. A metal contact is then formed within each contact opening and atop the oxygen rich region of each contact structure.
    Type: Application
    Filed: January 11, 2016
    Publication date: April 28, 2016
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Emre Alptekin, Nicolas L. Breil, Christian Lavoie, Ahmet S. Ozcan, Kathryn T. Schonenberg
  • Patent number: 9318323
    Abstract: Semiconductor devices with graphene nanoribbons and methods of manufacture are disclosed. The method includes forming at least one layer of Si material on a substrate. The method further includes forming at least one layer of carbon based material adjacent to the at least one layer of Si. The method further includes patterning at least one of the at least one layer of Si material and the at least one layer of carbon based material. The method further includes forming graphene on the patterned carbon based material.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: April 19, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Emre Alptekin, Viraj Y. Sardesai, Reinaldo A. Vega
  • Patent number: 9312185
    Abstract: Embodiments of present invention provide a method of forming metal resistor. The method includes forming a first and a second structure on top of a semiconductor substrate in a replacement-metal-gate process to have, respectively, a sacrificial gate and spacers adjacent to sidewalls of the sacrificial gate; covering the second structure with an etch-stop mask; replacing the sacrificial gate of the first structure with a replacement metal gate; removing the etch-stop mask to expose the sacrificial gate of the second structure; forming a silicide in the second structure as a metal resistor; and forming contacts to the silicide. In one embodiment, forming the silicide includes siliciding a top portion of the sacrificial gate of the second structure to form the metal resistor. In another embodiment, forming the silicide includes removing the sacrificial gate of the second structure to expose and silicide a channel region underneath thereof.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: April 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Cung Tran, Emre Alptekin, Viraj Sardesai, Reinaldo Vega
  • Patent number: 9305835
    Abstract: Embodiments of present invention provide a method of forming air spacers in a transistor structure. The method includes forming a gate structure of a transistor on top of a semiconductor substrate; forming a first and a second disposable spacers adjacent to a first and a second sidewall of the gate structure; forming a first and a second conductive studs next to the first and the second disposable spacer; removing the first and second disposable spacers to create empty spaces between the first and second conductive studs and the gate structure; and preserving the empty spaces by forming dielectric plugs at a top of the empty spaces.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: April 5, 2016
    Assignee: International Business Machines Corporation
    Inventors: Emre Alptekin, Viraj Sardesai, Cung Tran, Reinaldo Vega
  • Patent number: 9263454
    Abstract: Embodiments for the present invention provide a semiconductor device and methods for fabrication. In an embodiment of the present invention, a semiconductor structure comprises a first conductor horizontally formed on a semiconductor substrate. A second conductor is vertically formed in a semiconductor stack that includes the semiconductor substrate. An oxidized region is formed proximate to the first conductor. The second conductor is formed in a manner to be in electrical communication with the first conductor. The first conductor is formed in a manner to be laterally connected to the second conductor. The first conductor is formed in a manner to not traverse beneath the oxidized region. The first conductor is formed in a manner to have a reduced link-up resistance with adjacent epitaxial material included in the semiconductor structure.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: February 16, 2016
    Assignee: International Business Machines Corporation
    Inventors: Emre Alptekin, Pooja R. Batra, Kangguo Cheng, Ramachandra Divakaruni, Johnathan E. Faltermeier, Reinaldo A. Vega
  • Publication number: 20160043175
    Abstract: A tunnel field effect transistor (TFET) including a first doped source region for a first type TFET or a second doped source region for a second type TFET; a second doped drain region for the first type TFET or a first doped drain region for the second type TFET; a body region that is either intrinsic or doped, with a doping concentration less than that of the first or second source region, separating the first or second source from the first or second drain regions; a self-aligned etch cavity separating the first or second doped source and drain regions; a thin epitaxial channel region that is grown within the self-aligned etch cavity, covering at least the first or the second source region; a replacement gate stack comprising a high-k gate dielectric and one or a combination of metals and polysilicon; and sidewall spacers adjacent to the replacement gate stack.
    Type: Application
    Filed: October 20, 2015
    Publication date: February 11, 2016
    Inventors: Emre Alptekin, Hung H. Tran, Reinaldo A. Vega, Xiaobin Yuan
  • Publication number: 20160035876
    Abstract: After formation of gate structures over semiconductor fins and prior to formation of raised active regions, a directional ion beam is employed to form a dielectric material portion on end walls of semiconductor fins that are perpendicular to the lengthwise direction of the semiconductor fins. The angle of the directional ion beam is selected to be with a vertical plane including the lengthwise direction of the semiconductor fins, thereby avoiding formation of the dielectric material portion on lengthwise sidewalls of the semiconductor fins. Selective epitaxy of semiconductor material is performed to grow raised active regions from sidewall surfaces of the semiconductor fins. Optionally, horizontal portions of the dielectric material portion may be removed prior to the selective epitaxy process. Further, the dielectric material portion may optionally be removed after the selective epitaxy process.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Emre Alptekin, Sameer H. Jain, Viraj Y. Sardesai, Cung D. Tran, Reinaldo A. Vega
  • Publication number: 20160035864
    Abstract: After formation of gate structures over semiconductor fins and prior to formation of raised active regions, a directional ion beam is employed to form a dielectric material portion on end walls of semiconductor fins that are perpendicular to the lengthwise direction of the semiconductor fins. The angle of the directional ion beam is selected to be with a vertical plane including the lengthwise direction of the semiconductor fins, thereby avoiding formation of the dielectric material portion on lengthwise sidewalls of the semiconductor fins. Selective epitaxy of semiconductor material is performed to grow raised active regions from sidewall surfaces of the semiconductor fins. Optionally, horizontal portions of the dielectric material portion may be removed prior to the selective epitaxy process. Further, the dielectric material portion may optionally be removed after the selective epitaxy process.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Emre Alptekin, Sameer H. Jain, Viraj Y. Sardesai, Cung D. Tran, Reinaldo A. Vega
  • Publication number: 20160035574
    Abstract: Contact openings are formed into a dielectric material exposing a surface portion of a semiconductor substrate. A first transition metal liner including at least one first transition metal element, a second transition metal liner including at least one second transition metal element that is different from the at least one first transition metal element and a metal contact are sequentially formed within each contact opening. Following a planarization process, the structure is annealed forming metal semiconductor alloy contacts at the bottom of each contact opening. Each metal semiconductor alloy contact that is formed includes the at least one first transition metal element, the at least one second transition metal element and a semiconductor element.
    Type: Application
    Filed: October 12, 2015
    Publication date: February 4, 2016
    Inventors: Emre Alptekin, Nicolas L. Breil, Christian Lavoie, Ahmet S. Ozcan, Kathryn T. Schonenberg
  • Publication number: 20160035841
    Abstract: A first gate structure and a second gate structure are formed over a semiconductor material layer. The first gate structure includes a planar silicon-based gate dielectric, a planar high-k gate dielectric, a metallic nitride portion, and a first semiconductor material portion, and the second gate structure includes a silicon-based dielectric material portion and a second semiconductor material portion. After formation of gate spacers and a planarization dielectric layer, the second gate structure is replaced with a transient gate structure including a chemical oxide portion and a second high-k gate dielectric. A work-function metal layer and a conductive material portion can be formed in each gate electrode by replacement of semiconductor material portions. A gate electrode includes the planar silicon-based gate dielectric, the planar high-k gate dielectric, and a U-shaped high-k gate dielectric, and another gate electrode includes the chemical oxide portion and another U-shaped high-k gate dielectric.
    Type: Application
    Filed: October 13, 2015
    Publication date: February 4, 2016
    Inventors: Emre Alptekin, Unoh Kwon, Wing L. Lai, Zhengwen Li, Vijay Narayanan, Ravikumar Ramachandran, Reinaldo A. Vega
  • Publication number: 20160035875
    Abstract: After formation of gate structures over semiconductor fins and prior to formation of raised active regions, a directional ion beam is employed to form a dielectric material portion on end walls of semiconductor fins that are perpendicular to the lengthwise direction of the semiconductor fins. The angle of the directional ion beam is selected to be with a vertical plane including the lengthwise direction of the semiconductor fins, thereby avoiding formation of the dielectric material portion on lengthwise sidewalls of the semiconductor fins. Selective epitaxy of semiconductor material is performed to grow raised active regions from sidewall surfaces of the semiconductor fins. Optionally, horizontal portions of the dielectric material portion may be removed prior to the selective epitaxy process. Further, the dielectric material portion may optionally be removed after the selective epitaxy process.
    Type: Application
    Filed: October 15, 2015
    Publication date: February 4, 2016
    Inventors: Emre Alptekin, Sameer H. Jain, Viraj Y. Sardesai, Cung D. Tran, Reinaldo A. Vega
  • Publication number: 20160027889
    Abstract: A device is created by forming a layer of dielectric material on a silicon-containing region of a semiconductor substrate. An opening is created through the layer of dielectric material, the opening having a bottom and exposing the silicon-containing region. A metal stack is formed within the opening. The metal stack includes at least a first metal film on the silicon-containing region and a second gettering metal film on the first metal film. The metal stack is annealed to cause oxygen to migrate from the substrate to the gettering metal film. A first liner is formed within the opening. A fill metal is deposited in the opening.
    Type: Application
    Filed: October 7, 2015
    Publication date: January 28, 2016
    Inventors: Emre Alptekin, Ahmet S. Ozcan, Viraj Y. Sardesai, Kathryn T. Schonenberg, Cung D. Tran
  • Patent number: 9245892
    Abstract: Embodiments for the present invention provide a semiconductor device and methods for fabrication. In an embodiment of the present invention, a semiconductor structure comprises a first conductor horizontally formed on a semiconductor substrate. A second conductor is vertically formed in a semiconductor stack that includes the semiconductor substrate. An oxidized region is formed proximate to the first conductor. The second conductor is formed in a manner to be in electrical communication with the first conductor. The first conductor is formed in a manner to be laterally connected to the second conductor. The first conductor is formed in a manner to not traverse beneath the oxidized region. The first conductor is formed in a manner to have a reduced link-up resistance with adjacent epitaxial material included in the semiconductor structure.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: January 26, 2016
    Assignee: International Business Machines Corporation
    Inventors: Emre Alptekin, Pooja R. Batra, Kangguo Cheng, Ramachandra Divakaruni, Johnathan E. Faltermeier, Reinaldo A. Vega
  • Publication number: 20160013184
    Abstract: Embodiments of the present invention provide structures and methods for heat suppression in finFET devices. Fins are formed in a semiconductor substrate. A graphene layer is formed on a lower portion of the sidewalls of the fins. A shallow trench isolation region is disposed on the structure and covers the graphene layer, while an upper portion of the fins protrudes from the shallow trench isolation region. The graphene layer may also be deposited on a top surface of the base semiconductor substrate. The graphene serves to conduct heat away from the fins more effectively than other dielectric materials.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 14, 2016
    Inventors: Emre Alptekin, Viraj Yashawant Sardesai, Cung Do Tran, Reinaldo Ariel Vega
  • Patent number: 9236345
    Abstract: Contact openings are formed into a dielectric material exposing a surface portion of a semiconductor substrate. An interfacial oxide layer is then formed in each contact opening and on an exposed surface portion of the interfacial oxide layer. A NiPt alloy layer is formed within each opening and on the exposed surface portion of each interfacial oxide layer. An anneal is then performed that forms a contact structure of, from bottom to top, a nickel disilicide alloy body having an inverted pyramidal shape, a Pt rich silicide cap region and an oxygen rich region. A metal contact is then formed within each contact opening and atop the oxygen rich region of each contact structure.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: January 12, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Emre Alptekin, Nicolas L. Breil, Christian Lavoie, Ahmet S. Ozcan, Kathryn T. Schonenberg
  • Patent number: 9231072
    Abstract: A first gate structure and a second gate structure are formed over a semiconductor material layer. The first gate structure includes a planar silicon-based gate dielectric, a planar high-k gate dielectric, a metallic nitride portion, and a first semiconductor material portion, and the second gate structure includes a silicon-based dielectric material portion and a second semiconductor material portion. After formation of gate spacers and a planarization dielectric layer, the second gate structure is replaced with a transient gate structure including a chemical oxide portion and a second high-k gate dielectric. A work-function metal layer and a conductive material portion can be formed in each gate electrode by replacement of semiconductor material portions. A gate electrode includes the planar silicon-based gate dielectric, the planar high-k gate dielectric, and a U-shaped high-k gate dielectric, and another gate electrode includes the chemical oxide portion and another U-shaped high-k gate dielectric.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: January 5, 2016
    Assignee: International Business Machines Corporation
    Inventors: Emre Alptekin, Unoh Kwon, Wing L. Lai, Zhengwen Li, Vijay Narayanan, Ravikumar Ramachandran, Reinaldo A. Vega
  • Publication number: 20150364419
    Abstract: Embodiments of present disclosure provide methods of forming a resistor. One such method can include forming a first transistor structure and a second transistor structure on a semiconductor substrate, wherein the first transistor structure includes a dummy gate thereon; forming a mask on the first transistor structure; forming a metal gate on the second transistor structure; removing the mask, after the forming of the metal gate, to expose the first transistor structure; and siliciding a top portion of the dummy gate of the first transistor structure to yield a resistor.
    Type: Application
    Filed: August 27, 2015
    Publication date: December 17, 2015
    Inventors: Cung Tran, Emre Alptekin, Viraj Sardesai, Reinaldo Vega