Patents by Inventor Eric Bernier

Eric Bernier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230254043
    Abstract: An interconnect transceiver for transmitting and receiving optical signals, comprising an electronics module with a transceiver engine, and a photonics module with a laser source, a modulator, a photodetector to monitor the laser, one to receive an external optical signal, and a controller to operate the laser source and the laser source modulator, an electronic switch having two states is proposed. The first state is to allow monitoring of the modulated laser source by the transceiver engine, so as to acquire a reference set of operating parameters, and the second state is where a signal from the modulated laser source is directed to the controller, such as to allow real-time control of the source of the transmitting laser and modulator by the controller.
    Type: Application
    Filed: January 30, 2023
    Publication date: August 10, 2023
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Eric BERNIER, Mohammad Mehdi MANSOURI RAD
  • Publication number: 20230229026
    Abstract: There is provided an optical communication device having a silicon photonics (SiPh) component configured to perform an optical communication function; a complementary metal oxide semiconductor (CMOS) drive circuit coupled to the SiPh device for operation thereof; and one or more controllably adjustable CMOS impedance circuits coupled to the SiPh component and the electrical drive circuit. In the optical communication device, impedances of each of the CMOS impedance circuits can be adjustable over a respective limited range. The limited range may be designed and configured based at least in part on an anticipated amount of variation in electrical characteristics of the SiPh component, the CMOS electrical drive circuit, or a combination thereof. Such variation may be anticipated due to manufacturing variability.
    Type: Application
    Filed: January 14, 2022
    Publication date: July 20, 2023
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Mohammad Mehdi MANSOURI RAD, Eric BERNIER
  • Patent number: 11569913
    Abstract: An interconnect transceiver for transmitting and receiving optical signals, comprising an electronics module with a transceiver engine, and a photonics module with a laser source, a modulator, a photodetector to monitor the laser, one to receive an external optical signal, and a controller to operate the laser source and the laser source modulator, an electronic switch having two states is proposed. The first state is to allow monitoring of the modulated laser source by the transceiver engine, so as to acquire a reference set of operating parameters, and the second state is where a signal from the modulated laser source is directed to the controller, such as to allow real-time control of the source of the transmitting laser and modulator by the controller.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: January 31, 2023
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Eric Bernier, Mohammad Mehdi Mansouri Rad
  • Publication number: 20220350096
    Abstract: There is provided an optical power distribution system including an input optical fiber receiving light having an optical power. The optical power distribution system further includes an optical power distribution splitter optically coupled to the input optical fiber, the optical power distribution splitter including an all-dielectric optical waveguide, the optical power distribution splitter configured to divide the optical power into two or more portions. The optical power distribution system further includes an optical device optically coupled to optical power distribution splitter, the optical device including an optical waveguide having a semiconductor layer, the optical device receiving a first portion of the optical power.
    Type: Application
    Filed: April 28, 2022
    Publication date: November 3, 2022
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Dominic John GOODWILL, Eric BERNIER
  • Patent number: 11480844
    Abstract: A method and apparatus is provided for control of plural optical phase shifters in an optical device, such as a Mach-Zehnder Interferometer switch. Drive signal magnitude is set using a level setting input and is used for operating both phase shifters, which may have similar characteristics due to co-location and co-manufacture. A device state control signal selects which of the phase shifters receives the drive signal. One or more switches may be used to route the drive signal to the selected phase shifter. Separate level control circuits and state control circuits operating at different speeds may be employed. When the phase shifters are asymmetrically conducting (e.g. carrier injection) phase shifters, a bi-polar drive circuit can be employed. In this case, the phase shifters can be connected in reverse-parallel, and the drive signal polarity can be switchably reversed in order to drive a selected one of the phase shifters.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: October 25, 2022
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Dritan Celo, Chunhui Zhang, Dominic John Goodwill, Eric Bernier
  • Publication number: 20210399806
    Abstract: An interconnect transceiver for transmitting and receiving optical signals, comprising an electronics module with a transceiver engine, and a photonics module with a laser source, a modulator, a photodetector to monitor the laser, one to receive an external optical signal, and a controller to operate the laser source and the laser source modulator, an electronic switch having two states is proposed. The first state is to allow monitoring of the modulated laser source by the transceiver engine, so as to acquire a reference set of operating parameters, and the second state is where a signal from the modulated laser source is directed to the controller, such as to allow real-time control of the source of the transmitting laser and modulator by the controller.
    Type: Application
    Filed: June 7, 2021
    Publication date: December 23, 2021
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Eric BERNIER, Mohammad Mehdi MANSOURI RAD
  • Publication number: 20210157179
    Abstract: A pixel for creating an optical phase change includes a transparent electrical insulator, a first electrical conductor disposed on the transparent electrical insulator, the first electrical conductor comprising an antenna component and a connector component, an electrical insulator disposed on the first electrical conductor, a transparent semiconductor disposed on the electrical insulator, and a second electrical conductor disposed on the transparent semiconductor. The transparent semiconductor is sufficiently thick to prevent plasmonic resonance from occurring at an interface between the transparent semiconductor and the second electrical conductor.
    Type: Application
    Filed: November 23, 2020
    Publication date: May 27, 2021
    Applicants: Huawei Technologies Canada Co., Ltd., The University of Ottawa
    Inventors: Antonino CALA' LESINA, Pierre Simon Joseph BERINI, Lora RAMUNNO, Dominic John GOODWILL, Eric BERNIER
  • Patent number: 10921453
    Abstract: A LIDAR includes multiple light sources and a Liquid Crystal on Silicon (LCOS) device for controllably redirecting beams from each of the multiple light sources. The same or a different LCOS device can be used to controllably redirect reflected light to each of several corresponding light detectors. The LCOS device can be adjusted on a slower time scale while the light sources can be sequentially activated on a faster time scale. The LCOS device provides for fine steering control of LIDAR beams. The use of multiple light sources and detectors allows for a higher LIDAR scan rate.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: February 16, 2021
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Patrick Dumais, Eric Bernier, Mohammad Mehdi Mansouri Rad
  • Publication number: 20200355980
    Abstract: A method and apparatus is provided for control of plural optical phase shifters in an optical device, such as a Mach-Zehnder Interferometer switch. Drive signal magnitude is set using a level setting input and is used for operating both phase shifters, which may have similar characteristics due to co-location and co-manufacture. A device state control signal selects which of the phase shifters receives the drive signal. One or more switches may be used to route the drive signal to the selected phase shifter. Separate level control circuits and state control circuits operating at different speeds may be employed. When the phase shifters are asymmetrically conducting (e.g. carrier injection) phase shifters, a bi-polar drive circuit can be employed. In this case, the phase shifters can be connected in reverse-parallel, and the drive signal polarity can be switchably reversed in order to drive a selected one of the phase shifters.
    Type: Application
    Filed: July 6, 2020
    Publication date: November 12, 2020
    Inventors: Dritan Celo, Chunhui Zhang, Dominic John Goodwill, Eric Bernier
  • Patent number: 10613276
    Abstract: A LIDAR or other optical beamsteering apparatus includes an optical switch having a first port and a plurality of second ports. The switch is operated to establish an optical path between the first port and one of the second ports. The first port is connected to a light source or a light detector. Different second ports are connected to different surface/edge couplers. Each of the surface/edge couplers couples light from or to the apparatus in a different respective direction. The surface/edge couplers can be grating couplers. The direction of light coupling is configured due to the orientation of the surface/edge coupler and its grating period, where applicable. Surface/edge couplers can be arranged in a circular or concentric ring pattern. Grating couplers can be elongated.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: April 7, 2020
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Mohammad Mehdi Mansouri Rad, Patrick Dumais, Dominic John Goodwill, Eric Bernier
  • Patent number: 10509165
    Abstract: An assembly with optical gain assisted optical transposer is provided. The optical transposer which optically couples a fibre array unit and a photonic integrated circuit. The optical transposer includes one or more optical gain elements which are configured to provide optical compensation, for example optical gain to mitigate optical losses associated with multistage photonic integrated devices. According to some embodiments, the optical gain element is a semiconductor optical amplifier (SOA). According to some embodiments the photonic integrated circuit is a SiPh PIC.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: December 17, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Dritan Celo, Dominic John Goodwill, Eric Bernier
  • Patent number: 10511382
    Abstract: A monitoring and calibration apparatus for an optical networking device such as ROADM is provided. Reflectors are integrated into the device, for example at the ends of optical interconnect cables. The reflectors reflect light in specific monitoring wavelengths and pass other wavelengths such as those used for communication. A light source emits monitoring light which is reflected by the reflector and measured by a detector to measure the integrity of optical paths. The optical paths can include optical cables and cable connectors. Path integrity between different modules of the device can therefore be monitored. Multiple reflectors, reflecting light in different wavelengths, can be placed in series along the same optical path and used to monitor multiple segments of the path. A wavelength selective switch (WSS) of the device can be used to route monitoring light to different optical paths. The WSS also operates to route communication signals in the device.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: December 17, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Mohammad Mehdi Mansouri Rad, Hamid Mehrvar, Zhiping Jiang, Eric Bernier
  • Publication number: 20190377135
    Abstract: A LIDAR or other optical beamsteering apparatus includes an optical switch having a first port and a plurality of second ports. The switch is operated to establish an optical path between the first port and one of the second ports. The first port is connected to a light source or a light detector. Different second ports are connected to different surface/edge couplers. Each of the surface/edge couplers couples light from or to the apparatus in a different respective direction. The surface/edge couplers can be grating couplers. The direction of light coupling is configured due to the orientation of the surface/edge coupler and its grating period, where applicable. Surface/edge couplers can be arranged in a circular or concentric ring pattern. Grating couplers can be elongated.
    Type: Application
    Filed: June 8, 2018
    Publication date: December 12, 2019
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Mohammad Mehdi MANSOURI RAD, Patrick DUMAIS, Dominic John GOODWILL, Eric BERNIER
  • Publication number: 20190369254
    Abstract: A LIDAR includes multiple light sources and a Liquid Crystal on Silicon (LCOS) device for controllably redirecting beams from each of the multiple light sources. The same or a different LCOS device can be used to controllably redirect reflected light to each of several corresponding light detectors. The LCOS device can be adjusted on a slower time scale while the light sources can be sequentially activated on a faster time scale. The LCOS device provides for fine steering control of LIDAR beams. The use of multiple light sources and detectors allows for a higher LIDAR scan rate.
    Type: Application
    Filed: May 29, 2018
    Publication date: December 5, 2019
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Patrick DUMAIS, Eric BERNIER, Mohammad Mehdi MANSOURI RAD
  • Patent number: 10495794
    Abstract: A polarization insensitive optical phased array is provided, for LIDAR or other purposes. A polarization rotator splitter or two-dimensional grating coupler provides two components of co-polarized (e.g. TE-polarized) light. Each component can be routed to a separate optical phased array (OPA) component, and light output of one of the OPA components is rotated in polarization by use of a half wave plate. A polarization controller can receive and control the two components of co-polarized light and then passes the controlled light to the two OPA components. A single OPA component can also be used along with a controller which combines the two components of co-polarized light into a single output, passed to the single OPA component.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: December 3, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Chunshu Zhang, Eric Bernier, Dominic John Goodwill
  • Publication number: 20190324201
    Abstract: An assembly with optical gain assisted optical transposer is provided. The optical transposer which optically couples a fibre array unit and a photonic integrated circuit. The optical transposer includes one or more optical gain elements which are configured to provide optical compensation, for example optical gain to mitigate optical losses associated with multistage photonic integrated devices. According to some embodiments, the optical gain element is a semiconductor optical amplifier (SOA). According to some embodiments the photonic integrated circuit is a SiPh PIC.
    Type: Application
    Filed: April 19, 2018
    Publication date: October 24, 2019
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Dritan CELO, Dominic John GOODWILL, Eric BERNIER
  • Patent number: 10372013
    Abstract: Monitoring output power levels of a carrier-effect based switching cell allows phase errors resulting from driving a PIN or PN junction of the switching cell to be dynamically compensated for. The compensation may also allow for compensating of phase errors resulting from the phase imbalance of input couplers as well as phase errors from the waveguide due to fabrication variations. By dynamically compensating for phase errors caused by the driving of the PIN or PN junction, the extinction ratio of the carrier-effect based switching cell can be increased.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: August 6, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jia Jiang, Dominic John Goodwill, Eric Bernier
  • Publication number: 20190238224
    Abstract: A monitoring and calibration apparatus for an optical networking device such as ROADM is provided. Reflectors are integrated into the device, for example at the ends of optical interconnect cables. The reflectors reflect light in specific monitoring wavelengths and pass other wavelengths such as those used for communication. A light source emits monitoring light which is reflected by the reflector and measured by a detector to measure the integrity of optical paths. The optical paths can include optical cables and cable connectors. Path integrity between different modules of the device can therefore be monitored. Multiple reflectors, reflecting light in different wavelengths, can be placed in series along the same optical path and used to monitor multiple segments of the path. A wavelength selective switch (WSS) of the device can be used to route monitoring light to different optical paths. The WSS also operates to route communication signals in the device.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 1, 2019
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Mohammad Mehdi MANSOURI RAD, Hamid MEHRVAR, Zhiping JIANG, Eric BERNIER
  • Patent number: 10345524
    Abstract: An optical coupler at an edge of a photonic integrated circuit (PIC) is provided and configured to match a mode of a waveguide of the PIC to a mode of an external optical fiber. A core of the waveguide terminates prior to the edge and can include an inverted taper for mode enlargement. The waveguide cladding includes an inverted taper and is surrounded by an outer cladding material of lower refractive index, forming a second waveguide. The cladding and outer cladding cooperate to guide light between the core and the edge while the inverted taper contributes to mode enlargement. The outer cladding material is selected to have a refractive index which facilitates the mode matching to optical fiber. The coupler can be provided using lithography. Material underneath the waveguide cladding can be removed by an undercutting process and the outer cladding material deposited in place thereof.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: July 9, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jia Jiang, Eric Bernier
  • Publication number: 20190179064
    Abstract: A polarization insensitive optical phased array is provided, for LIDAR or other purposes. A polarization rotator splitter or two-dimensional grating coupler provides two components of co-polarized (e.g. TE-polarized) light. Each component can be routed to a separate optical phased array (OPA) component, and light output of one of the OPA components is rotated in polarization by use of a half wave plate. A polarization controller can receive and control the two components of co-polarized light and then passes the controlled light to the two OPA components. A single OPA component can also be used along with a controller which combines the two components of co-polarized light into a single output, passed to the single OPA component.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Chunshu ZHANG, Eric BERNIER, Dominic John GOODWILL