Patents by Inventor Eric Beyne

Eric Beyne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250125291
    Abstract: A semiconductor product is provided. The semiconductor product comprises a first wafer (21) comprising a first active pad array (21a), and at least a second wafer (22) comprising at least a second active pad array (22a). In this context, the first wafer (21) and the at least one second wafer (22) are bonded together. In addition to this, the first wafer (21) and/or the at least one second wafer (22) comprises a transition area (23) being directly adjacent to the first active pad array (21a) and/or the at least one second active pad array (22a).
    Type: Application
    Filed: February 21, 2023
    Publication date: April 17, 2025
    Inventors: Emmanuel LE BOULBAR, Soeren STEUDEL, Johan VERTOMMEN, Robert MILLER, Joeri DE VOS, Stefaan VAN HUYLENBROECK, Eric BEYNE, Liesbeth WITTERS
  • Publication number: 20250118564
    Abstract: A layer of semiconductor devices is produced on the frontside of a crystalline semiconductor substrate, in regions separated by dielectric-filled cavities formed previously. Additional layers are then formed on the device layer. The substrate is then flipped and bonded face down to a second substrate, following by the thinning of the crystalline first substrate from the backside. The thinning proceeds as far as possible without removing the full thickness of the first substrate anywhere across its surface. After this, an anisotropic etch is performed to remove additional material of the first substrate. The in-plane dimensions of the device regions separated by the dielectric-filled cavities are specified so that the anisotropic etch is stopped by a crystallographic plane of the substrate material or by the dielectric material in the cavities, before it can reach the devices on the frontside.
    Type: Application
    Filed: October 4, 2024
    Publication date: April 10, 2025
    Inventors: Eric Beyne, Liesbeth Witters
  • Publication number: 20250118691
    Abstract: A semiconductor including a plurality of structured contacts suitable for forming electrical connections to respective contacts of another semiconductor component, wherein each of said structured contacts comprises a planar contact surface and a plurality of upright tube-shaped structures extending outward from the planar contact surface is disclosed. The tube-shaped structures may be arranged in a regular array on the respective contact surfaces and are produced by a sequence of steps including the patterning of a dielectric layer formed on the front surface of the component, said patterning resulting in openings in said dielectric layer, and the deposition of a conformal layer on said patterned dielectric layer, thereby lining the bottom and sidewalls of the openings. The conformal layer may be removed from the upper surface of the dielectric layer and the material of said layer is removed selectively with respect to the conformal layer, resulting in said tube-shaped structures.
    Type: Application
    Filed: October 4, 2024
    Publication date: April 10, 2025
    Inventors: Jaber Derakhshandeh, Eric Beyne
  • Publication number: 20240297136
    Abstract: Superconducting solder bumps are produced on a qubit substrate by electrodeposition. The substrate comprises qubit areas, and superconducting contact pads connected to the qubit areas. First a protection layer is formed on the substrate, and patterned so as to cover at least the qubit areas. Then one or more thin layers are deposited conformally on the patterned protection layer, the thin layers comprising at least a non-superconducting layer suitable for acting as a seed layer for the electrodeposition of the solder bumps. The seed layer is removed locally in areas which lie within the surface area of respective contact pads. This is done by producing and patterning a mask layer, so that openings are formed therein, and by removing the seed layer from the bottom of the openings. The solder bumps are formed by electrodeposition of the solder material on the bottom of the openings. After the formation of the solder bumps, the seed layer and the protection layer are removed.
    Type: Application
    Filed: February 29, 2024
    Publication date: September 5, 2024
    Inventors: Jaber Derakhshandeh, Vadiraj Manjunath Ananthapadmanabha Rao, Danny Wan, Eric Beyne, Kristiaan De Greve, Anton Potocnik
  • Publication number: 20240222260
    Abstract: The disclosed technology is related to semiconductor components, including a multilayer structure with a plurality of MIM capacitors. The capacitors are realized as an assembly of capacitors in the form of a stack of at least three electrically conductive layers, separated by dielectric layers and formed conformally on a topography defined by a plurality of dielectric pillars distributed on a conductive bottom plate formed on a first level of the multilayer interconnect structure. By realizing a height difference between different pillars or different groups of pillars, the intermediate ayers of the stack become available for contacting the layers by via connections.
    Type: Application
    Filed: December 19, 2023
    Publication date: July 4, 2024
    Inventors: Eric Beyne, Philip Nolmans, Kenichi Miyaguchi
  • Publication number: 20240213120
    Abstract: A micro-electronic component, for example an integrated circuit chip, is provided. In one aspect, the component includes a front-end-of-line (FEOL) portion and a back-end-of-line (BEOL) portion at its front side. A back side power delivery network (PDN) is present at the back side of the component, with via connections connecting the PDN to the FEOL and BEOL portions. The back side PDN includes a “dry part” and a “wet part,” where the dry part includes multiple interconnect levels of the PDN embedded in a dielectric material. The “wet part” includes the remaining PDN levels which are not embedded in a dielectric but which are part of a manifold structure configured to receive therein a flow of cooling fluid in order to remove heat generated by the devices in the FEOL portion.
    Type: Application
    Filed: December 21, 2023
    Publication date: June 27, 2024
    Inventors: Herman Oprins, Geert Van der Plas, Eric Beyne, Pieter Woeltgens
  • Publication number: 20240203965
    Abstract: A method for bonding and interconnecting micro-electronic components is provided. In one aspect, two substrates are bonded to form a 3D assembly of micro-electronic components. Both substrates include first cavities open to the respective bonding surfaces, and at least one substrate includes a second cavity that is larger than the first cavities in terms of its in-plane dimensions, and possibly also in terms of its depth. An electrically conductive layer is produced on each substrate. The layer is patterned in the second cavity, and a micro-electronic device is fabricated in the second cavity. The bonding surfaces are planarized, removing the conformal layer from the bonding surfaces, and the substrates are bonded to form the assembly, where the first cavities of both substrates are brought into mutual contact to form an electrical connection. Device in the large cavities may be contacted through TSV connections or back end of line interconnect levels.
    Type: Application
    Filed: December 13, 2023
    Publication date: June 20, 2024
    Inventors: Jaber Derakhshandeh, Eric Beyne
  • Publication number: 20240121914
    Abstract: A cooling device configured to be mounted in close proximity to an electronic component that is to be cooled is provided. In one aspect, the device includes impingement channels and return channels for guiding a flow of cooling fluid towards and away from a cooled surface of the electronic component. The device also includes a heat exchanger and a pump, so that the flow cycle of a cooling fluid is fully confined within the device itself. The impingement channels, the return channels, and the heat exchanger are integrated in a common housing, which includes an inlet opening and an outlet opening for coupling the device to a refrigerant loop. The pump may be a micropump mounted directly on the housing and coupled to the inlet and outlet openings in the housing. A cooling system including the device and the refrigerant loop is also provided.
    Type: Application
    Filed: October 3, 2023
    Publication date: April 11, 2024
    Inventors: Vladimir Cherman, Herman Oprins, Eric Beyne
  • Patent number: 11810892
    Abstract: A method of bonding semiconductor components is described. In one aspect a first component, for example a semiconductor die, is bonded to a second component, for example a semiconductor wafer or another die, by direct metal-metal bonds between metal bumps on one component and corresponding bumps or contact pads on the other component. In addition, a number of solder bumps are provided on one of the components, and corresponding contact areas on the other component, and fast solidified solder connections are established between the solder bumps and the corresponding contact areas, without realizing the metal-metal bonds. The latter metal-metal bonds are established in a heating step performed after the soldering step. This enables a fast bonding process applied to multiple dies bonded on different areas of the wafer and/or stacked one on top of the other, followed by a single heating step for realizing metal-metal bonds between the respective dies and the wafer or between multiple stacked dies.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: November 7, 2023
    Assignee: IMEC vzw
    Inventors: Jaber Derakhshandeh, Eric Beyne, Gerald Peter Beyer
  • Patent number: 11769750
    Abstract: A substrate, assembly and method for bonding and electrically interconnecting substrates are provided. According to the method, two substrates are provided, each comprising metal contact structures that are electrically isolated from each other by a bonding layer of dielectric material. Openings are produced in the bonding layer, the openings lying within the surface area of the respective contact structures, exposing the contact material of the structures at the bottom of the openings. Then a layer of conductive material is deposited, filling the openings, after which the material is planarized, removing it from the surface of the bonding layer and leaving a recessed contact patch in the openings. The substrates are then aligned, brought into contact, and bonded by applying an annealing step at a temperature suitable for causing thermal expansion of the contact structures.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: September 26, 2023
    Assignee: Imec VZW
    Inventors: Joeri De Vos, Eric Beyne
  • Publication number: 20230200263
    Abstract: The present disclosure relates to a quantum bit (qubit) chip. The qubit chip includes two or more qubit wafers arranged along a common axis and one or more spacer elements. The spacer elements and the qubit wafers are alternately arranged on the common axis. The qubit chip further includes a conductive arrangement configured to electrically connect the two or more qubit wafers, where the conductive arrangement includes at least one superconducting via per each qubit wafer of the two or more qubit wafers and each spacer element of the one or more spacer elements, the at least one superconducting via passing through the qubit wafer or spacer element.
    Type: Application
    Filed: November 30, 2022
    Publication date: June 22, 2023
    Inventors: Jaber Derakhshandeh, Iuliana Radu, Eric Beyne, Bogdan Govoreanu
  • Publication number: 20230170297
    Abstract: A semiconductor component, for example an integrated circuit chip, including a semiconductor substrate having active devices at the front side thereof and I/O terminals at the back side of the component, is provided. In one aspect, the terminals are connected to the active devices through TSV connections and buried rails in an area of the substrate that is separate from the area in which the active devices are located. The I/O TSV connections are located in a floating well of the substrate that is separated from the rest of the substrate by a second well formed of material of the opposite conductivity type compared to the material of the floating well. The second well includes at least one contact configured to be coupled to a voltage that is suitable for reverse-biasing the junction between the floating well and the second well.
    Type: Application
    Filed: November 21, 2022
    Publication date: June 1, 2023
    Inventors: Shih-Hung CHEN, Eric BEYNE, Geert VAN DER PLAS
  • Publication number: 20230142597
    Abstract: A method of producing an IC chip is provided. In one aspect, deep trenches are formed in a semiconductor layer that forms the top layer of a device wafer, the trenches going through the complete thickness of the layer. The trenches are filled with a sacrificial material, that is etched back and covered with a capping layer, thereby forming sacrificial buried rails. After processing active devices on the front surface of the semiconductor layer, including connections to the sacrificial rails, the device wafer is bonded face down to a carrier wafer, and thinned from the back side, until the sacrificial rails are exposed. The sacrificial material and the capping layer are removed and replaced by a conductive material, thereby forming the actual buried power rails. A back side power delivery network supplies power through the buried rails to the active devices of the IC. Using a sacrificial material for the buried rails can enable a wider choice of materials for these buried rails.
    Type: Application
    Filed: October 19, 2022
    Publication date: May 11, 2023
    Inventors: Anabela Veloso, Eric Beyne, Anne Jourdain
  • Publication number: 20230080522
    Abstract: An integrated circuit (IC) chip is provided. In one aspect, a semiconductor substrate includes active devices on its front surface and power delivery tracks on its back surface. The active devices are powered through mutually parallel buried power rails, with the power delivery tracks running transversely with respect to the power rails, and connected to the power rails by a plurality of Through Semiconductor Via connections, which run from the power rails to the back of the substrate. The TSVs are elongate slit-shaped TSVs aligned to the power rails and arranged in a staggered pattern, so that any one of the power delivery tracks is connected to a first row of mutually parallel TSVs, and any power delivery track directly adjacent to the power delivery track is connected to another row of TSVs which are staggered relative to the TSVs of the first row. A method of producing an IC chip includes producing the slit-shaped TSVs before the buried power rails.
    Type: Application
    Filed: September 15, 2022
    Publication date: March 16, 2023
    Inventors: Eric Beyne, Anne Jourdain, Anabela Veloso
  • Patent number: 11476162
    Abstract: A method is provided for dicing a semiconductor substrate into a plurality of dies, the semiconductor substrate having a front side including a plurality of device areas, a back side, and a plurality of through substrate vias. The method includes defining, from the front side, at least one trench to be formed between adjacent device areas, forming the at least one trench, from the front side of the semiconductor substrate, arranging a protective layer on the front side of the semiconductor substrate, thinning the semiconductor substrate from the back side to reduce the thickness of the semiconductor substrate, processing the back side of the semiconductor substrate to form at least one contact, the contact contacting at least one through substrate via, etching through the minor portion of the thickness of the semiconductor substrate underneath the at least one trench, and dicing the semiconductor substrate into the plurality of dies.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: October 18, 2022
    Assignee: Imec VZW
    Inventors: Frank Holsteyns, Eric Beyne, Christophe Lorant, Simon Braun
  • Patent number: 11462420
    Abstract: A method for packaging semiconductor dies by overmolding is disclosed. The dies are embedded in a substrate of a mold material, and cavities are produced in the mold substrate by producing 3D structures of a sacrificial material prior to the overmolding step. Afterwards, the sacrificial material is removed to thereby create cavities in the mold substrate. A conformal layer is produced on the 3D structures prior to overmolding, and the mold substrate is thinned to expose an upper surface of the 3D structures. The conformal layer is not removed when the sacrificial structures are removed. In this way, the conformal layer remains on the surfaces of the mold substrate inside the cavity. In one aspect, the conformal layer may have a protective function, useful in the production of packages including dies which come into contact with fluid substances.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: October 4, 2022
    Assignee: IMEC vzw
    Inventor: Eric Beyne
  • Patent number: 11367705
    Abstract: A method of using sacrificial structures in a mold substrate for packaging a first die and one or more second dies or stacks thereof is disclosed. The method allows testing of the first die prior to mounting the second dies, without requiring a TSV insert. In one aspect, a block of sacrificial material is embedded together with the first die in a first mold substrate and to one side of the first die. The removal of the block creates an opening. The method is configured so that contacts are exposed at the bottom of the opening, the contacts being electrically connected to corresponding contacts on the first die. This may be realized by bonding both the die and the sacrificial block to a redistribution layer, or by mounting a bridge device between the first die and the block prior to a first overmolding applied for producing the first mold substrate.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: June 21, 2022
    Assignee: IMEC vzw
    Inventor: Eric Beyne
  • Publication number: 20220189830
    Abstract: A method is provided to produce dies for a wafer reconstitution. The method comprises steps of inspecting an epitaxial wafer to detect one or more defects, overlaying a dicing scheme on the epitaxial wafer with the detected defects, classifying the dies in the dicing scheme as good dies or bad dies, and dicing the good dies and transferring the good dies onto a carrier wafer or a target wafer to wafer reconstitution.
    Type: Application
    Filed: December 14, 2021
    Publication date: June 16, 2022
    Inventors: Eric BEYNE, Robert MILLER, Kenneth June REBIBIS, Soeren STEUDEL, Johan VERTOMMEN
  • Patent number: 11362061
    Abstract: A method is disclosed for electrically bonding a first semiconductor component to a second semiconductor component, both components including arrays of contact areas. In one aspect, prior to bonding, layers of an intermetallic compound are formed on the contact areas of the second component. The roughness of the intermetallic layers is such that the intermetallic layers include cavities suitable for insertion of a solder material in the cavities, under the application of a bonding pressure, when the solder is at a temperature below its melting temperature. The components are aligned and bonded, while the solder material is applied between the two. Bonding takes place at a temperature below the melting temperature of the solder. The bond can be established only by the insertion of the solder into the cavities of the intermetallic layers, and without the formation of a second intermetallic layer.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: June 14, 2022
    Assignees: IMEC vzw, Katholieke Universiteit Leuven
    Inventors: Lin Hou, Jaber Derakhshandeh, Eric Beyne, Ingrid De Wolf, Giovanni Capuz
  • Patent number: 11316066
    Abstract: An optical device and a method for fabricating an optical device are described. The optical device may be a light emitting diode (LED) device, e.g. a micro-LED (?LED) device, or a photodiode (PD) device, e.g. an imager. The method comprises processing, on a first semiconductor wafer, an array including a plurality of compound semiconductor LEDs or compound semiconductor PDs and a plurality of first contacts, each first contact being electrically connected to one of the LEDs or PDs. The method further comprises processing, on a second semiconductor wafer, a CMOS IC and a plurality of second contacts electrically connected to the CMOS IC. The method further comprises hybrid bonding the first semiconductor wafer to the second semiconductor wafer such that the plurality of LEDs or PDs are individually connected to the CMOS IC via the first and second contacts.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: April 26, 2022
    Assignee: IMEC vzw
    Inventors: Soeren Steudel, Alexander Mityashin, Eric Beyne, Maarten Rosmeulen