Patents by Inventor Eric Eva
Eric Eva has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250231399Abstract: A microlithographic projection exposure mirror has an optical effective surface (11, 21, 31), a mirror substrate (12, 22, 32), a reflection layer system (17, 27, 37) reflecting electromagnetic radiation incident on the optical effective surface, and at least one piezoelectric layer (14, 24, 34) arranged between the substrate and the reflection layer system. An electric field for producing a locally variable deformation is applied by a first electrode arrangement (15, 25, 35) situated on the side of the piezoelectric layer facing the reflection layer system, and by a second electrode arrangement (13, 23, 33) situated on the side of the piezoelectric layer facing the mirror substrate. A layer (16, 26b, 36b) of amorphous material which is compaction-sensitive on exposure to low-energy electron beam radiation and which is arranged on the side of the piezoelectric layer facing the reflection layer system has a thickness of at least 20 ?m.Type: ApplicationFiled: April 4, 2025Publication date: July 17, 2025Inventors: Eric EVA, Matthias KAES
-
Publication number: 20250135716Abstract: The disclosed techniques relate to a method for producing a base element of an optical element for semiconductor lithography, comprising the following steps: firstly, producing a material mixture comprising at least two material components; secondly, producing an intermediate element from the material mixture, wherein the material mixture comprises at least one first material component made of the material of the later base element, and wherein the material mixture comprises a second material component that functions to mechanically stabilise the intermediate element; thirdly, producing the base element from the intermediate element via temporary heating and at least partial removal of the second material component.Type: ApplicationFiled: January 3, 2025Publication date: May 1, 2025Inventors: Eduard SCHWEIGERT, Heiko FELDMANN, Eric EVA, Johannes DITTRICH
-
Patent number: 12117731Abstract: This disclosure relates to a method for producing a mirror of a microlithographic projection exposure apparatus, a first mirror part and a second mirror part being provided, which are in contact in the region of a first connecting surface of the first mirror part and a second connecting surface of the second mirror part. For forming a durable connection between the first mirror part and the second mirror part, the first mirror part and the second mirror part are heated up to a holding temperature of at least 400° C. and are kept at the holding temperature during a holding time. After the holding time has elapsed, the first mirror part and the second mirror part are cooled down to a first cooling temperature at a first cooling rate of less than or equal to 100 K/h.Type: GrantFiled: December 13, 2022Date of Patent: October 15, 2024Assignee: CARL ZEISS SMT GMBHInventors: Christoph Zaczek, Erik Loopstra, Eric Eva, Drew Chieda, Matthew Lipson, Victor Perez-Falcon, Moshe Shemesh
-
Patent number: 12101317Abstract: A computer-implemented method of verifying a user's identity comprising the steps of receiving biometric user data, personalized user data, and unique phone data of a verifying user from the verifying user's electronic computing device 102, compiling the biometric user data, personalized user data, and unique phone data of a verifying user into a single user identity data file, encrypting the single user identity data file and generating a data decryption key, and segregating the single user identity data file into a plurality of encrypted segregated user identity data files each independently stored on a first administrator server and a second administrator server, wherein the plurality of encrypted segregated user identity data files may only be aggregated and decrypted upon providing secondary biometric user data, personalized user data, and unique phone data which matches the original biometric user data, personalized user data, and unique phone data of the verifying user.Type: GrantFiled: August 17, 2022Date of Patent: September 24, 2024Inventors: Marc Duthoit, Eric Eva-Candela
-
Publication number: 20240219849Abstract: An optical element (M2) for reflecting radiation includes: a substrate (31) formed from quartz glass or from a glass ceramic and having a first part-body (26a) and a second part-body (26b) that are joined along a bonding face (27) by hot bonding, a plurality of cooling channels (25) that run within the substrate (31) in the region of the bonding face (27) and are separated from one another by lands (35), and a reflective coating (33) applied to a surface (32) of the first part-body. In the substrate, a respective cooling channel (25) has a channel wall (36) which, at at least one position (PS) adjoining a respective land (35), has a zero crossing temperature (TZC,S) that deviates by less than 3.0 K from a zero crossing temperature (TZC,M) at a middle (M) of the land. Also disclosed is an associated optical arrangement e.g. for an EUV lithography system.Type: ApplicationFiled: March 12, 2024Publication date: July 4, 2024Inventor: Eric EVA
-
Publication number: 20240192605Abstract: This disclosure relates to a method for producing a mirror of a microlithographic projection exposure apparatus, a first mirror part and a second mirror part being provided, which are in contact in the region of a first connecting surface of the first mirror part and a second connecting surface of the second mirror part. For forming a durable connection between the first mirror part and the second mirror part, the first mirror part and the second mirror part are heated up to a holding temperature of at least 400° C. and are kept at the holding temperature during a holding time. After the holding time has elapsed, the first mirror part and the second mirror part are cooled down to a first cooling temperature at a first cooling rate of less than or equal to 100 K/h.Type: ApplicationFiled: December 13, 2022Publication date: June 13, 2024Inventors: Christoph ZACZEK, Erik LOOPSTRA, Eric EVA, Drew CHIEDA, Matthew LIPSON, Victor PEREZ-FALCON, Moshe SHEMESH
-
Patent number: 11987521Abstract: In order to reduce the degree of relaxation after an optical substrate has been compacted, in particular after a longer period, substrates (51) or reflective optical elements (50), in particular for EUV lithography, with substrates (51) of this type, are proposed. These substrates (51), which have a surface region (511) with a reflective coating (54), are characterised in that, at least near to the surface region (511), the titanium-doped quartz glass has a proportion of Si—O—O—Si bonds of at least 1*1016/cm3 and/or a proportion of Si—Si bonds of at least 1*1016/cm3 or, along a notional line (513) perpendicular to the surface region (511), over a length (517) of 500 nm or more, a hydrogen content of more than 5×1018 molecules/cm3.Type: GrantFiled: December 29, 2020Date of Patent: May 21, 2024Assignee: CARL ZEISS SMT GMBHInventor: Eric Eva
-
Publication number: 20240027730Abstract: A method for producing a mirror of a lithography system includes providing first and second mirror parts. Cooling channels having elongate cooling channel openings in the region of a first connecting surface of the first mirror part are formed in the first mirror part, and/or cooling channels having elongate cooling channel openings in the region of a second connecting surface of the second mirror part are formed in the second mirror part. The method also includes bringing together the first and second mirror parts so that initially a partial region of the first connecting surface and a partial region of the second connecting surface come into contact and form a common contact surface. The common contact surface is enlarged by continuing to bring the first and second mirror parts together in a direction along the longitudinal extents of the cooling channel openings.Type: ApplicationFiled: September 26, 2023Publication date: January 25, 2024Inventors: Christoph Zaczek, Erik Loopstra, Eric Eva
-
Publication number: 20240019613Abstract: A method for producing a mirror of a microlithographic projection exposure apparatus comprises providing a first mirror part having a first connecting surface and a second mirror part having a second connecting surface is provided. Cooling channels and/or auxiliary channels are formed in the second mirror part. The method also includes bringing together the first and second mirror parts so that initially a partial region of the first connecting surface and a partial region of the second connecting surface come into contact and form a common contact surface. The method further includes enlarging the contact surface by continuing to bring the first and second mirror parts together in a transverse direction with respect to the cooling channels or auxiliary channels.Type: ApplicationFiled: September 27, 2023Publication date: January 18, 2024Inventors: Christoph Zaczek, Erik Loopstra, Eric Eva
-
Patent number: 11874525Abstract: An optical element reflects radiation, such as EUV radiation. The optical element includes a substrate with a surface to which a reflective coating is applied. The substrate has at least one channel through which a coolant can flow. The substrate is formed from fused silica, such as titanium-doped fused silica, or a glass ceramic. The channel has a length of at least 10 cm below the surface to which the reflective coating is applied. The cross-sectional area of the channel varies by no more than +/?20% over the length of the channel.Type: GrantFiled: June 2, 2022Date of Patent: January 16, 2024Assignee: Carl Zeiss SMT GmbHInventor: Eric Eva
-
Publication number: 20230375939Abstract: A method for producing a mirror of a projection exposure apparatus for microlithography includes providing at least one material blank. The material blank comprises a material with a very low coefficient of thermal expansion and has fault zones within which at least one material parameter deviates from a specified value by more than a minimum deviation. A first mirror part having a first connecting surface is produced from the material blank. A second mirror part having a second connecting surface is produced from the material blank or a further material blank. The first and second mirror parts are permanently connected to one another in the region of the first and second connecting surfaces.Type: ApplicationFiled: July 31, 2023Publication date: November 23, 2023Inventors: Christoph Zaczek, Erik Loopstra, Eric Eva
-
Publication number: 20230050280Abstract: A computer-implemented method of verifying a user's identity comprising the steps of receiving biometric user data, personalized user data, and unique phone data of a verifying user from the verifying user's electronic computing device 102, compiling the biometric user data, personalized user data, and unique phone data of a verifying user into a single user identity data file, encrypting the single user identity data file and generating a data decryption key, and segregating the single user identity data file into a plurality of encrypted segregated user identity data files each independently stored on a first administrator server and a second administrator server, wherein the plurality of encrypted segregated user identity data files may only be aggregated and decrypted upon providing secondary biometric user data, personalized user data, and unique phone data which matches the original biometric user data, personalized user data, and unique phone data of the verifying user.Type: ApplicationFiled: August 17, 2022Publication date: February 16, 2023Inventors: Marc Duthoit, Eric Eva-Candela
-
Publication number: 20220299731Abstract: An optical element reflects radiation, such as EUV radiation. The optical element includes a substrate with a surface to which a reflective coating is applied. The substrate has at least one channel through which a coolant can flow. The substrate is formed from fused silica, such as titanium-doped fused silica, or a glass ceramic. The channel has a length of at least 10 cm below the surface to which the reflective coating is applied. The cross-sectional area of the channel varies by no more than +/?20% over the length of the channel.Type: ApplicationFiled: June 2, 2022Publication date: September 22, 2022Inventor: Eric Eva
-
Patent number: 11126087Abstract: A component for a mirror array for EUV lithography, particularly for use in faceted mirrors in illumination systems of EUV lithography devices. A component (500) for a mirror array for EUV lithography is proposed which is at least partially made from a composite material including matrix material (502) that contains copper and/or aluminium, and reinforcing material in the form of fibers (504). The composite material also includes particles (508) that consist of one or more of the materials from the group: graphite, adamantine carbon, and ceramic.Type: GrantFiled: March 15, 2019Date of Patent: September 21, 2021Assignee: CARL ZEISS SMT GMBHInventor: Eric Eva
-
Patent number: 11099484Abstract: A cost-effective method for repairing reflective optical elements for EUV lithography. These optical elements (60) have a substrate (61) and a coating (62) that reflects at a working wavelength in the range between 5 nm and 20 nm and is damaged as a result of formation of hydrogen bubbles. The method includes: localizing a damaged area (63, 64, 65, 66) in the coating (62) and covering the damaged area (63, 64, 65, 66) with one or more materials having low hydrogen permeability by applying a cover element to the damaged area. The cover element is formed of a surface structure, a convex or concave surface, or a coating corresponding to the coating of the reflective optical element, or a combination thereof. The method is particularly suitable for collector mirrors (70) for EUV lithography. After the repair, the optical elements have cover elements (71, 72, 73).Type: GrantFiled: June 6, 2019Date of Patent: August 24, 2021Assignee: CARL ZEISS SMT GMBHInventors: Robert Meier, Holger Kierey, Christof Jalics, Eric Eva, Ralf Winter, Arno Schmittner, Alexey Kuznetsov, Vitaliy Shklover, Christoph Nottbohm, Wolfgang Merkel
-
Publication number: 20210116616Abstract: In order to reduce the degree of relaxation after an optical substrate has been compacted, in particular after a longer period, substrates (51) or reflective optical elements (50), in particular for EUV lithography, with substrates (51) of this type, are proposed. These substrates (51), which have a surface region (511) with a reflective coating (54), are characterised in that, at least near to the surface region (511), the titanium-doped quartz glass has a proportion of Si—O—O—Si bonds of at least 1*1016/cm3 and/or a proportion of Si—Si bonds of at least 1*1016/cm3 or, along a notional line (513) perpendicular to the surface region (511), over a length (517) of 500 nm or more, a hydrogen content of more than 5×1018 molecules/cm3.Type: ApplicationFiled: December 29, 2020Publication date: April 22, 2021Inventor: Eric EVA
-
Patent number: 10976667Abstract: An optical manipulator (MAN) includes an optical element (OE), in particular composed of fused silica, and an actuating device (DR) that reversibly changes the surface form (SF) of the optical element (OE). The actuating device (DR) has a plurality of actuators (AK) that mechanically act on the optical element (OE) at a plurality of contact areas. The optical element (OE) at least at action regions in vicinities of the contact areas of the actuators (AK) is prestressed to an compressive stress of more than 1 MPa, preferably of more than 100 MPa, particularly preferably of more than 500 MPa. Also disclosed are a projection lens provided with at least one such optical manipulator (MAN), a projection exposure apparatus having such a projection lens, and a method for producing such an optical manipulator (MAN).Type: GrantFiled: December 30, 2016Date of Patent: April 13, 2021Assignee: CARL ZEISS SMT GMBHInventor: Eric Eva
-
Patent number: 10649340Abstract: In order to prevent delamination of a reflective coating from the substrate under the influence of reactive hydrogen, a reflective optical element (50) for EUV lithography is provided, which has a substrate (51) and a reflective coating (54) for reflecting radiation in the wavelength range of 5 nm to 20 nm. A functional layer (60) is arranged between the reflective coating (54) and the substrate (51). With the functional layer, the concentration of hydrogen in atom % at the side of the substrate facing the reflective coating is reduced by at least a factor of 2.Type: GrantFiled: January 25, 2019Date of Patent: May 12, 2020Assignee: CARL ZEISS SMT GMBHInventors: Dirk Heinrich Ehm, Vitaliy Shklover, Irene Ament, Stefan-Wolfgang Schmidt, Moritz Becker, Stefan Wiesner, Diana Urich, Robert Meier, Ralf Winter, Christof Jalics, Holger Kierey, Eric Eva
-
Publication number: 20190302628Abstract: A cost-effective method for repairing reflective optical elements for EUV lithography. These optical elements (60) have a substrate (61) and a coating (62) that reflects at a working wavelength in the range between 5 nm and 20 nm and is damaged as a result of formation of hydrogen bubbles. The method includes: localizing a damaged area (63, 64, 65, 66) in the coating (62) and covering the damaged area (63, 64, 65, 66) with one or more materials having low hydrogen permeability by applying a cover element to the damaged area. The cover element is formed of a surface structure, a convex or concave surface, or a coating corresponding to the coating of the reflective optical element, or a combination thereof. The method is particularly suitable for collector mirrors (70) for EUV lithography. After the repair, the optical elements have cover elements (71, 72, 73).Type: ApplicationFiled: June 6, 2019Publication date: October 3, 2019Inventors: Robert MEIER, Holger KIEREY, Christof JALICS, Eric EVA, Ralf WINTER, Arno SCHMITTNER, Alexey KUZNETSOV, Vitaliy SHKLOVER, Christoph NOTTBOHM, Wolfgang MERKEL
-
Patent number: 10427965Abstract: A method for loading a blank composed of fused silica with hydrogen, including loading the blank at a first temperature (T1) and a first hydrogen partial pressure (p1), and further loading the blank at a second temperature (T2) which is different from the first temperature and at a second hydrogen partial pressure (p2) which is different from the first hydrogen partial pressure. The first and second temperatures (T1, T2) are lower than a limit temperature (TL) at which a thermal formation of silane in the fused silica of the blank commences. Also disclosed are a lens element produced from such a blank and a projection lens that includes at least one such lens element.Type: GrantFiled: February 2, 2016Date of Patent: October 1, 2019Assignee: CARL ZEISS SMT GMBHInventor: Eric Eva