Patents by Inventor Eric G. Johnson

Eric G. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140025162
    Abstract: An expandable prosthetic device and method of delivery that allows the initial placement of multiple guidewires into selected target sites. The prosthesis includes a main body device. This main body device has a separate side branch guidewire lumen that passes through the main body device and through a side opening in the main body device. As the main body device is advanced, the side opening is self guided (by the side branch guidewire) and self-aligns to the side branch vessel ostium. The main body device is then deployed, leaving the side branch guidewire in place. A side branch device is then advanced along the side branch guidewire through the main body device, through the side wall opening and into the native side branch vessel. The side branch device can then be deployed to engage the main body device and the native side branch vessel.
    Type: Application
    Filed: September 23, 2013
    Publication date: January 23, 2014
    Applicant: W.L. Gore & Associates, Inc.
    Inventors: Rochelle M. Hamer, Eric G. Johnson
  • Patent number: 8529139
    Abstract: A method for transmitting a signal in an optical system includes generating an optical signal along an optical axis for transmission through an optical element, positioning the optical element so that a surface discontinuity is positioned along the optical axis such that the optical signal defines a substantially radially symmetric intensity profile, and launching the optical signal into an input face of an optical fiber such that the intensity profile is substantially null proximate an optical axis associated with the optical fiber.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: September 10, 2013
    Assignee: DigitalOptics Corporation East
    Inventors: Alan D. Kathman, Charles S. Koehler, William H. Welch, Eric G. Johnson, Robert D. TeKolste
  • Publication number: 20130064605
    Abstract: An apparatus is provided for moving a floating or submerged marine structure. Embodiments include a track fixedly mounted near or under the waterline surface, extending from a first point to a second point for defining a path of motion of the marine structure. A riser cable has a first end movably attached to the track between the first and second points, and a second end fixedly attached to the marine structure. A trolley is attached to the first end of the riser cable between the first end and the track, and has a roller for engaging the track for distributing environmental forces of the marine structure to the track. A drive unit is attached to the marine structure (or to the trolley) for moving the marine structure (or the trolley) such that the marine structure or one end of the marine structure moves along the path of the track.
    Type: Application
    Filed: August 3, 2012
    Publication date: March 14, 2013
    Inventor: Eric G. JOHNSON
  • Patent number: 8216294
    Abstract: The present invention is a catheter device that includes a disruptable guidewire channel. The guidewire channel is configured to provide necessary trackability of the catheter along the guidewire during introduction of the catheter to a treatment site. Once treatment is completed, the guidewire channel can then be disrupted so as to free the guidewire from the catheter in situ. The apparatus of the present invention provides distinct advantages over existing over-the-wire and rapid exchange catheter introduction methods, including the ability to achieve much faster treatment implement exchanges, the ability to rapidly deliver multiple treatment implements in series, and the ability to maintain multiple treatment implements simultaneously at a treatment site using a single guidewire.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: July 10, 2012
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Eric G. Johnson, George N. Foutrakis, D H Perkins
  • Publication number: 20120076456
    Abstract: A method for transmitting a signal in an optical system includes generating an optical signal along an optical axis for transmission through an optical element, positioning the optical element so that a surface discontinuity is positioned along the optical axis such that the optical signal defines a substantially radially symmetric intensity profile, and launching the optical signal into an input face of an optical fiber such that the intensity profile is substantially null proximate an optical axis associated with the optical fiber.
    Type: Application
    Filed: August 2, 2010
    Publication date: March 29, 2012
    Applicant: DigitalOptics Corporation East
    Inventors: Alan D. Kathman, Charles S. Koehler, William H. Welch, Eric G. Johnson, Robert D. TeKolste
  • Publication number: 20120039611
    Abstract: A communication system includes at least one optical-wireless device coupled to a longitudinal side of an optical fiber. The optical-wireless device may include an optical fiber power unit for converting optical power into electrical power, and a wireless communication unit electrically powered by the optical fiber power unit. The optical-wireless device may include a substrate mounting the optical fiber power unit and the wireless communication unit to the longitudinal side of the optical fiber. The wireless communication unit may include a radio frequency transmitter, and a signal optical grating coupling the transmitter to the longitudinal side of the optical fiber. The radio frequency transmitter in some embodiments may include an ultra-wideband transmitter. A dipole antenna may also be provided including first and second portions extending in opposite directions along the longitudinal side of the optical fiber.
    Type: Application
    Filed: October 26, 2011
    Publication date: February 16, 2012
    Applicant: HARRIS CORPORATION
    Inventors: Raymond Charles Rumpf, Eric G. Johnson
  • Patent number: 8050244
    Abstract: A communication system includes at least one optical-wireless device coupled to a longitudinal side of an optical fiber. The optical-wireless device may include an optical fiber power unit for converting optical power into electrical power, and a wireless communication unit electrically powered by the optical fiber power unit. The optical-wireless device may include a substrate mounting the optical fiber power unit and the wireless communication unit to the longitudinal side of the optical fiber. The wireless communication unit may include a radio frequency transmitter, and a signal optical grating coupling the transmitter to the longitudinal side of the optical fiber. The radio frequency transmitter in some embodiments may include an ultra-wideband transmitter. A dipole antenna may also be provided including first and second portions extending in opposite directions along the longitudinal side of the optical fiber.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: November 1, 2011
    Assignee: Harris Corporation
    Inventors: Raymond Charles Rumpf, Eric G. Johnson
  • Patent number: 7769258
    Abstract: An optical element may include a first diffractive structure having a radially symmetric amplitude function and a second diffractive structure having a phase function. The second diffractive structure may serve as a vortex lens. A system employing the optical element may include a light source and/or a detector.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: August 3, 2010
    Assignee: Tessera North America, Inc.
    Inventors: Alan D. Kathman, Charles S. Koehler, William H. Welch, Eric G. Johnson, Robert D. Tekolste
  • Publication number: 20090247988
    Abstract: A catheter for use with a guidewire, the catheter having a distal tip that centers the guidewire even when the catheter is severely bent, thereby avoiding protrusion of the distal tip of the catheter at the outer meridian of the catheter bend and reducing the risk of the catheter tip catching on the luminal surface of the adjacent vasculature. The distal tip of the catheter incorporates at least one guidewire bearing, preferably multiple bearings in the form of longitudinally oriented ribs, which provide the centering characteristic with minimal friction between the inner surface of the catheter distal tip and the outer surface of the guidewire. Preferably, at least four guidewire bearings are provided.
    Type: Application
    Filed: June 8, 2009
    Publication date: October 1, 2009
    Inventor: Eric G Johnson
  • Publication number: 20090232508
    Abstract: A communication system includes at least one optical-wireless device coupled to a longitudinal side of an optical fiber. The optical-wireless device may include an optical fiber power unit for converting optical power into electrical power, and a wireless communication unit electrically powered by the optical fiber power unit. The optical-wireless device may include a substrate mounting the optical fiber power unit and the wireless communication unit to the longitudinal side of the optical fiber. The wireless communication unit may include a radio frequency transmitter, and a signal optical grating coupling the transmitter to the longitudinal side of the optical fiber. The radio frequency transmitter in some embodiments may include an ultra-wideband transmitter. A dipole antenna may also be provided including first and second portions extending in opposite directions along the longitudinal side of the optical fiber.
    Type: Application
    Filed: May 27, 2009
    Publication date: September 17, 2009
    Applicant: HARRIS CORPORATION
    Inventors: Raymond Charles Rumpf, Eric G. Johnson
  • Publication number: 20090226134
    Abstract: An optical element may include a first diffractive structure having a radially symmetric amplitude function and a second diffractive structure having a phase function. The second diffractive structure may serve as a vortex lens. A system employing the optical element may include a light source and/or a detector.
    Type: Application
    Filed: May 4, 2009
    Publication date: September 10, 2009
    Applicant: DIGITAL OPTICS CORPORATION (TESSERA NORTH AMERICA, INC.)
    Inventors: Alan D. KATHMAN, Charles S. KOEHLER, William H. WELCH, Eric G. JOHNSON, Robert D. TEKOLSTE
  • Patent number: 7585596
    Abstract: Methods and systems of creating a photo-mask to form continuous relief micro-structures in photo-active material. This technology uses a basic amplitude mask or electron-beam to create a binary phase grating with pi-phase depth on a transparent reticle coated with photo-active material. The reticle is then used as a phase mask for the fabrication of analog micro-elements. The mask is used in an image reduction machine such as an optical stepper. The period and duty cycle of the phase gratings can be varied to create the proper analog intensity for the desired micro-profile on the photo-active material. The design, analysis, and fabrication procedure of this invention for prisms and positive micro-lenses has been demonstrated.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: September 8, 2009
    Inventors: Eric G. Johnson, Mahesh Pitchumani, Jin Won Sung, Heidi J. Hockel
  • Patent number: 7583642
    Abstract: A communication system includes at least one optical-wireless device coupled to a longitudinal side of an optical fiber. The optical-wireless device may include an optical fiber power unit for converting optical power into electrical power, and a wireless communication unit electrically powered by the optical fiber power unit. The optical-wireless device may include a substrate mounting the optical fiber power unit and the wireless communication unit to the longitudinal side of the optical fiber. The wireless communication unit may include a radio frequency transmitter, and a signal optical grating coupling the transmitter to the longitudinal side of the optical fiber. The radio frequency transmitter in some embodiments may include an ultra-wideband transmitter. A dipole antenna may also be provided including first and second portions extending in opposite directions along the longitudinal side of the optical fiber.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: September 1, 2009
    Assignee: Harris Corporation
    Inventors: Raymond Charles Rumpf, Eric G. Johnson
  • Patent number: 7547304
    Abstract: A catheter for use with a guidewire, the catheter having a distal tip that centers the guidewire even when the catheter is severely bent, thereby avoiding protrusion of the distal tip of the catheter at the outer meridian of the catheter bend and reducing the risk of the catheter tip catching on the luminal surface of the adjacent vasculature. The distal tip of the catheter incorporates at least one guidewire bearing, preferably multiple bearings in the form of longitudinally oriented ribs, which provide the centering characteristic with minimal friction between the inner surface of the catheter distal tip and the outer surface of the guidewire. Preferably, at least four guidewire bearings are provided.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: June 16, 2009
    Assignee: Gore Enterprise Holdings, Inc.
    Inventor: Eric G. Johnson
  • Patent number: 7529446
    Abstract: An optical element may include a first diffractive structure having a radially symmetric amplitude function and a second diffractive structure having a phase function. The second diffractive structure may serve as a vortex lens. A system employing the optical element may include a light source and/or a detector.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: May 5, 2009
    Assignee: Tessera North America, Inc.
    Inventors: Alan D. Kathman, Charles S. Koehler, William H. Welch, Eric G. Johnson, Robert D. Tekolste
  • Publication number: 20080159695
    Abstract: An optical element may include a first diffractive structure having a radially symmetric amplitude function and a second diffractive structure having a phase function. The second diffractive structure may serve as a vortex lens. A system employing the optical element may include a light source and/or a detector.
    Type: Application
    Filed: March 10, 2008
    Publication date: July 3, 2008
    Applicant: DIGITAL OPTICS CORPORATION (now TESSERA NORTH AMERICA, INC.)
    Inventors: Alan D. Kathman, Charles S. Koehler, William H. Welch, Eric G. Johnson, Robert D. Tekolste
  • Patent number: 7343069
    Abstract: An optical element may include a first diffractive structure having a radially symmetric amplitude function and a second diffractive structure having a phase function. The second diffractive structure may serve as a vortex lens. A system employing the optical element may include a light source and/or a detector.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: March 11, 2008
    Assignee: Tessera North America, Inc.
    Inventors: Alan D. Kathman, Charles S. Koehler, William H. Welch, Eric G. Johnson, Robert D. Tekolste
  • Patent number: 7221823
    Abstract: An apparatus which couples light to a fiber from a light source at an input plane while reducing back reflections includes returning light reflected back through such that the returning light does not substantially overlap with an output of the light source in the input plane. This apparatus may include a mode matching element and/or an angular distribution altering element. The apparatus may be reciprocal. The reciprocal apparatus may prevent light traversing the apparatus again having a change in phase of light from substantially overlapping an original object in an input plane.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: May 22, 2007
    Assignee: Digital Optics Corporation
    Inventors: Alan D. Kathman, Charles S. Koehler, William H. Welch, Eric G. Johnson, Robert D. Tekolste
  • Patent number: 7194016
    Abstract: Our wafer scale processing techniques produce chip-laser-diodes with a diffraction grating (78) that redirects output light out the top (88) and/or bottom surfaces. Generally, a diffraction grating (78) and integrated lens-grating (78) are used herein to couple light from the chip to an output fiber (74), and the lens-grating (78) is spaced from the diffraction grating (76). Preferably the diffraction grating (76) and integrated lens grating (78) are also used to couple light from the output fiber (74) back to the active region of the chip. The integrated lens-grating (78) can be in a coupling block (82). The use of a coupling block (82) can eliminate “facet-type damage”. A coupling block (82) is generally used herein to couple light from the chip to an output fiber (74), and preferably to couple feedback reflected from the fiber (74) back to the chip.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: March 20, 2007
    Assignees: The Research Foundation of the University of Central Florida, Infinite Photonics, Inc.
    Inventors: Jeff A. Bullington, Richard A. Stoltz, Laurent Vaissie, Eric G. Johnson, M. Gamal Moharam
  • Patent number: 6952507
    Abstract: An optical coupler reduces differential mode delay in a fiber by reducing an amount of light incident on the fiber in a region in which the refractive index is not well controlled. This region of the fiber is typically in the center of the fiber The optical coupler directs light away from the this region and/or provides a high angle of incidence to any light on this region. A diffuser may be used to reduce sensitivity of the coupler to any fluctutations in the output of the light source. The optical coupler does not need to be offset from the center of the multi-mode coupler. A phase function of an azimuthal mode of the fiber may be imposed on the light beam so that a substantial null on axis is maintained even after propogation of the light beam beyond the depth of focus of the coupler. A diffractive element generating a beam which propogates in a spiral fashion along an axis allows the shape of the beam to be maintained for longer than a depth of focus of the diffractive element.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: October 4, 2005
    Assignee: Digital Optics Corp.
    Inventors: Eric G. Johnson, Michael R. Feldman, Thomas J. Suleski