Patents by Inventor Eric Mazur

Eric Mazur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8143686
    Abstract: In one aspect, the present invention provides a method of processing a substrate, e.g., a semiconductor substrate, by irradiating a surface of the substrate (or at least a portion of the surface) with a first set of polarized short laser pulses while exposing the surface to a fluid to generate a plurality of structures on the surface, e.g., within a top layer of the surface. Subsequently, the structured surface can be irradiated with another set of polarized short laser pulses having a different polarization than that of the initial set while exposing the structured surface to a fluid, e.g., the same fluid initially utilized to form the structured surface or a different fluid. In many embodiments, the second set of polarized laser pulses cause the surface structures formed by the first set to break up into smaller-sized structures, e.g., nano-sized features such as nano-sized rods.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: March 27, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Eric Mazur, Mengyan Shen
  • Publication number: 20120039560
    Abstract: The present invention provides optical devices that employ nonlinear optical effects for processing optical signals. For example, such an optical device can include a nano-sized interferometric component that provides an optical output signal via interference of two input signals subsequent to their asymmetric nonlinear phase accumulation. The interferometric element can have a variety of configurations, such as Sagnac, Mach-Zehnder or Michelson configurations.
    Type: Application
    Filed: January 8, 2010
    Publication date: February 16, 2012
    Applicant: President & Fellows of Harvard College
    Inventors: Eric Mazur, Rafael R. Gattass, Geoffry T. Svacha, Katherine C.f. Phillips, Christopher C. Evans
  • Publication number: 20120024364
    Abstract: In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
    Type: Application
    Filed: October 6, 2011
    Publication date: February 2, 2012
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: James E. Carey, III, Eric Mazur
  • Patent number: 8080467
    Abstract: In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: December 20, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: James Edward Carey, III, Eric Mazur
  • Publication number: 20110155649
    Abstract: The invention provides methods and systems for separating particles that exhibit different Raman characteristics. The method can include introducing nanoparticles, on which Raman-active molecules are adsorbed, into a photopolymerizable resin and exposing to excite Raman active vibrational modes of the molecules to generate Raman-shifted radiation suitable for polymerizing the resin such that the Raman-shifted radiation causes selective polymerization of a resin surrounding nanoparticles if the nanoparticles provide a Raman enhancement factor greater than a threshold. In addition, methods for electrically isolating nanoparticles, or selectively removing one type of nanoparticles from collections, are disclosed. These methods rely on generation of blue-shifted anti-Stokes photons to selectively expose portions of a photoresist covering the nanoparticles to those photons. Such exposure can cause a change in the exposed portions (e.g.
    Type: Application
    Filed: May 21, 2009
    Publication date: June 30, 2011
    Applicant: PRESIDENT & FELLOWS OF HARVARD COLLEGE
    Inventors: Eric Mazur, Eric Diebold
  • Publication number: 20110121206
    Abstract: The present invention generally provides semiconductor substrates having submicron-sized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.
    Type: Application
    Filed: February 4, 2011
    Publication date: May 26, 2011
    Applicant: PRESIDENT & FELLOWS OF HARVARD COLLEGE
    Inventors: Eric Mazur, Mengyan Shen
  • Publication number: 20110100441
    Abstract: Photovoltaic devices (e.g., solar cells) are disclosed that include at least three radiation absorbing layers, each capable of absorbing radiation over a different wavelength range of the solar radiation spectrum. Any two of these three wavelength ranges can be partially overlapping, or alternatively they can be distinct. The layers are disposed relative to one another so as to form two junctions, each of which includes a depletion region. In some cases, the radiation absorbing layers can collectively absorb radiation over a wavelength range that spans at least about 60%, or 70%, or 80%, and preferably 90% of the solar radiation wavelength spectrum. By way of example, in some embodiments, one layer can exhibit significant absorption of solar radiation (e.g., it can absorb at least one radiation wavelength at an absorptance greater than about 90%) at wavelengths less than about 0.7 microns while another layer can exhibit significant absorption of the solar radiation at wavelengths in a range of about 0.
    Type: Application
    Filed: February 2, 2009
    Publication date: May 5, 2011
    Applicant: PRESIDENT & FELLOWS OF HARVARD COLLEGE
    Inventors: Eric Mazur, Mark Winkler, Brian R. Rull
  • Publication number: 20110045244
    Abstract: Methods and apparatus for processing a substrate (e.g., a semiconductor substrate) is disclosed that includes irradiating at least a portion of the substrate surface with a plurality of short radiation pulses while the surface portion is exposed to a dopant compound. The pulses are selected to have a fluence at the substrate surface that is greater than a melting fluence threshold (a minimum fluence needed for the radiation pulse to cause substrate melting) and less than an ablation fluence threshold (a minimum fluence needed for the radiation pulse to cause substrate ablation). In this manner a quantity of the dopant can be incorporated into the substrate while ensuring that the roughness of the substrate's surface is significantly less than the wavelength of the plied radiation pulses.
    Type: Application
    Filed: February 2, 2009
    Publication date: February 24, 2011
    Inventors: Eric Mazur, Mark Winkler
  • Publication number: 20110031471
    Abstract: In one aspect, the present invention provides a method of processing a substrate, e.g., a semiconductor substrate, by irradiating a surface of the substrate (or at least a portion of the surface) with a first set of polarized short laser pulses while exposing the surface to a fluid to generate a plurality of structures on the surface, e.g., within a top layer of the surface. Subsequently, the structured surface can be irradiated with another set of polarized short laser pulses having a different polarization than that of the initial set while exposing the structured surface to a fluid, e.g., the same fluid initially utilized to form the structured surface or a different fluid. In many embodiments, the second set of polarized laser pulses cause the surface structures formed by the first set to break up into smaller-sized structures, e.g., nano-sized features such as nano-sized rods.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 10, 2011
    Applicant: PRESIDENT & FELLOWS OF HARVARD COLLEGE
    Inventors: Eric Mazur, Mengyan Shen
  • Patent number: 7884439
    Abstract: In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: February 8, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Eric Mazur, James E. Carey, III
  • Patent number: 7884446
    Abstract: The present invention generally provides semiconductor substrates having submicron-sized surface features generated by irradiating the surface with ultra short laser pulses. In one aspect, a method of processing a semiconductor substrate is disclosed that includes placing at least a portion of a surface of the substrate in contact with a fluid, and exposing that surface portion to one or more femtosecond pulses so as to modify the topography of that portion. The modification can include, e.g., generating a plurality of submicron-sized spikes in an upper layer of the surface.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: February 8, 2011
    Assignee: President & Fellows of Harvard College
    Inventors: Eric Mazur, Mengyan Shen
  • Patent number: 7864312
    Abstract: In one aspect, the present invention provides methods for fabricating substrates for use in a variety of analytical and/or diagnostic applications. Such a substrate can be generated by exposing a semiconductor surface (e.g., silicon surface) to a plurality of short laser pulses to generate micron-sized, and preferably submicron-sized, structures on the surface. The structured surface can then be coated with discontinuous metal coating characterized by one or more metalized surface region and a plurality of surface gaps.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: January 4, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Eric Mazur, Eric Diebold
  • Patent number: 7816220
    Abstract: In one aspect, the present invention provides a method of processing a substrate, e.g., a semiconductor substrate, by irradiating a surface of the substrate (or at least a portion of the surface) with a first set of polarized short laser pulses while exposing the surface to a fluid to generate a plurality of structures on the surface, e.g., within a top layer of the surface. Subsequently, the structured surface can be irradiated with another set of polarized short laser pulses having a different polarization than that of the initial set while exposing the structured surface to a fluid, e.g., the same fluid initially utilized to form the structured surface or a different fluid. In many embodiments, the second set of polarized laser pulses cause the surface structures formed by the first set to break up into smaller-sized structures, e.g., nano-sized features such as nano-sized rods.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: October 19, 2010
    Assignee: President & Fellows of Harvard College
    Inventors: Eric Mazur, Mengyan Shen
  • Publication number: 20100240203
    Abstract: In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
    Type: Application
    Filed: May 10, 2010
    Publication date: September 23, 2010
    Inventors: James E. Carey, III, Eric Mazur
  • Patent number: 7781856
    Abstract: In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: August 24, 2010
    Assignee: President and Fellows of Harvard College
    Inventors: Eric Mazur, James E. Carey, III
  • Publication number: 20100208237
    Abstract: The present invention generally provides substrates for use in a variety of analytical and/or diagnostic applications as well as optical systems that employ them, in particular systems based on surface enhanced Raman spectroscopy (SERS). In one aspect, the invention provides polymeric substrates having conductive surfaces that exhibit micron-sized, and preferably submicron-sized, structures. In other aspects, methods for fabricating such substrates are disclosed, including a step of irradiating a mold surface with a plurality of short laser pulses to form micron-sized or submicron-sized structures and the mold surface and generating the polymeric substrate by replication from the mold surface.
    Type: Application
    Filed: January 22, 2008
    Publication date: August 19, 2010
    Applicant: PRESIDENT & FELLOWS OF HARVARD COLLEGE
    Inventors: Eric Mazur, Eric Diebold, Tommaso Baldacchini
  • Publication number: 20100171949
    Abstract: In one aspect, a system for use in product packaging is disclosed that includes a polymeric sensing substrate coupled to a package such that a front sensing surface thereof is in contact with a portion of a product, e.g., a fungible product, stored in the package and a back surface thereof is accessible via an environment external to the package. The system further includes a radiation source adapted to direct radiation to the substrate's back surface such that the radiation would interact with one or more molecular species of the product that are in contact with the substrate's sensing surface. The system also includes a detector that is adapted to detect radiation returning from the substrate in response to its illumination by the radiation source. The front surface of the sensing substrate can comprise a plurality of micron-sized or submicron-sized ridges having a discontinuous or continuous metal coating, e.g.
    Type: Application
    Filed: January 22, 2008
    Publication date: July 8, 2010
    Inventors: Eric Mazur, Eric Diebold
  • Publication number: 20100171948
    Abstract: In one aspect, the present invention generally provides methods for fabricating substrates for use in a variety of analytical and/or diagnostic applications. Such a substrate can be generated by exposing a semiconductor surface (e.g., silicon surface) to a plurality of short laser pulses to generate micron-sized, and preferably submicron-sized, structures on the surface. The structured surface can then be coated with a thin metallic layer, e.g., one having a thickness in a range of about 10 nm to about 1000 nm.
    Type: Application
    Filed: June 10, 2009
    Publication date: July 8, 2010
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Eric Mazur, Eric Diebold, Steven Ebstein
  • Patent number: 7715003
    Abstract: In one aspect, the present invention generally provides methods for fabricating substrates for use in a variety of analytical and/or diagnostic applications. Such a substrate can be generated by exposing a semiconductor surface (e.g., silicon surface) to a plurality of short laser pulses to generate micron-sized, and preferably submicron-sized, structures on the surface. The structured surface can then be coated with a thin metallic layer, e.g., one having a thickness in a range of about 10 nm to about 1000 nm.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: May 11, 2010
    Assignee: President & Fellows of Harvard College
    Inventors: Eric Mazur, Eric Diebold, Steven Ebstein
  • Publication number: 20090320529
    Abstract: Thermal 3-D microstructuring of photonic structures is provided by depositing laser energy by non-linear absorption into a focal volume about each point of a substrate to be micromachined at a rate greater than the rate that it diffuses thereout to produce a point source of heat in a region of the bulk larger than the focal volume about each point that structurally alters the region of the bulk larger than the focal volume about each point, and by dragging the point source of heat thereby provided point-to-point along any linear and non-linear path to fabricate photonic structures in the bulk of the substrate. Exemplary optical waveguides and optical beamsplitters are thermally micromachined in 3-D in the bulk of a glass substrate. The total number of pulses incident to each point is controlled, either by varying the rate that the point source of heat is scanned point-to-point and/or by varying the repetition rate of the laser, to select the mode supported by the waveguide or beamsplitter to be micromachined.
    Type: Application
    Filed: August 3, 2009
    Publication date: December 31, 2009
    Applicant: PRESIDENT & FELLOWS OF HARVARD COLL
    Inventors: Chris Schaffer, Andre Brodeur, Rafael R. Gattass, Jonathan B. Ashcom, Eric Mazur