Patents by Inventor Erich Griebl

Erich Griebl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11949006
    Abstract: A power semiconductor device includes: first and second trenches extending from a surface of a semiconductor body along a vertical direction and laterally confining a mesa region along a first lateral direction; source and body regions in the mesa region electrically connected to a first load terminal; and a first insulation layer having a plurality of insulation blocks, two of which laterally confine a contact hole. The first load terminal extends into the contact hole to contact the source and body regions at the mesa region surface. A first insulation block laterally overlaps with the first trench. A second insulation block laterally overlaps with the second trench. The first insulation block has a first lateral concentration profile of a first implantation material of the source region along the first lateral direction that is different from a corresponding second lateral concentration profile for the second insulation block.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: April 2, 2024
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Markus Beninger-Bina, Matteo Dainese, Ingo Dirnstorfer, Erich Griebl, Johannes Georg Laven, Anton Mauder, Hans-Joachim Schulze
  • Patent number: 11888061
    Abstract: A power semiconductor device includes: a semiconductor body; a control electrode at least partially on or inside the semiconductor body; elevated source regions in the semiconductor body adjacent to the control electrode; recessed body regions adjacent to the elevated source regions; and a dielectric layer arranged on a portion of a surface of the semiconductor body and defining a contact hole. The contact hole is at least partially filled with a conductive material establishing an electrical contact with at least a portion of the elevated source regions and at least a portion of the recessed body regions. At least one first contact surface between at least one elevated source region and the dielectric layer extends in a first horizontal plane. At least one second contact surface between at least one recessed body region and the dielectric layer extends in a second horizontal plane located vertically below the first horizontal plane.
    Type: Grant
    Filed: January 17, 2022
    Date of Patent: January 30, 2024
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Erich Griebl, Markus Beninger-Bina, Matteo Dainese, Ingo Dirnstorfer
  • Patent number: 11610986
    Abstract: A power semiconductor switch includes an active cell region with a drift region, an edge termination region, and IGBT cells within the active cell region. Each IGBT cell includes trenches that extend into the drift region and laterally confine mesas. At least one control trench has a control electrode for controlling the load current. At least one dummy trench has a dummy electrode electrically coupled to the control electrode. At least one further trench has a further trench electrode. At least one active mesa is electrically connected to a first load terminal within the active cell region. Each control trench is arranged adjacent to no more than one active mesa. At least one inactive mesa is adjacent to the dummy trench. A cross-trench structure merges each control trench, dummy trench and further trench to each other. The cross-trench structure overlaps at least partially along a vertical direction with the trenches.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: March 21, 2023
    Assignees: Infineon Technologies AG, Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Matteo Dainese, Alexander Philippou, Markus Beninger-Bina, Ingo Dirnstorfer, Erich Griebl, Christian Jaeger, Johannes Georg Laven, Caspar Leendertz, Frank Dieter Pfirsch
  • Patent number: 11581429
    Abstract: A power semiconductor switch includes an active cell region with a drift region, an edge termination region, and IGBT cells within the active cell region. Each IGBT cell includes trenches that extend into the drift region and laterally confine mesas. At least one control trench has a control electrode for controlling the load current. At least one dummy trench has a dummy electrode electrically coupled to the control electrode. At least one further trench has a further trench electrode. At least one active mesa is electrically connected to a first load terminal within the active cell region. Each control trench is arranged adjacent to no more than one active mesa. At least one inactive mesa is adjacent to the dummy trench. A cross-trench structure merges each control trench, dummy trench and further trench to each other. The cross-trench structure overlaps at least partially along a vertical direction with the trenches.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: February 14, 2023
    Assignees: Infineon Technologies AG, Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Matteo Dainese, Alexander Philippou, Markus Beninger-Bina, Ingo Dirnstorfer, Erich Griebl, Christian Jaeger, Johannes Georg Laven, Caspar Leendertz, Frank Dieter Pfirsch
  • Patent number: 11515264
    Abstract: A method for processing a semiconductor wafer is proposed. The method may include reducing a thickness of the semiconductor wafer. A carrier structure is placed on a first side of the semiconductor wafer, e.g. before or after reducing the thickness of the semiconductor wafer. The method further includes providing a support structure on a second side of the semiconductor wafer opposite to the first side, e.g. after reducing the thickness of the semiconductor wafer. Methods for welding a support structure onto a semiconductor wafer are proposed. Further, semiconductor composite structures with support structures welded onto a semiconductor wafer are proposed.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: November 29, 2022
    Assignee: Infineon Technologies AG
    Inventors: Francisco Javier Santos Rodriguez, Alexander Breymesser, Erich Griebl, Michael Knabl, Matthias Kuenle, Andreas Moser, Roland Rupp, Hans-Joachim Schulze, Sokratis Sgouridis, Stephan Voss
  • Publication number: 20220359428
    Abstract: A method for processing a semiconductor wafer is proposed. The method may include: reducing a thickness of the semiconductor wafer; before or after reducing the thickness of the semiconductor wafer, placing a carrier structure at a first side of the semiconductor wafer; and after reducing the thickness of the semiconductor wafer, providing a support structure at a second side of the semiconductor wafer opposite to the first side. Methods for welding a support structure onto a semiconductor wafer are proposed. Further, semiconductor composite structures with support structures welded onto a semiconductor wafer are proposed.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 10, 2022
    Inventors: Francisco Javier Santos Rodriguez, Alexander Breymesser, Erich Griebl, Michael Knabl, Matthias Kuenle, Andreas Moser, Roland Rupp, Hans-Joachim Schulze, Sokratis Sgouridis, Stephan Voss
  • Patent number: 11469317
    Abstract: An RC IGBT includes, in an active region, an IGBT section and at least three diode sections. The arrangement of the diode sections obeys a design rule.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: October 11, 2022
    Assignee: Infineon Technologies Austria AG
    Inventors: Frank Dieter Pfirsch, Erich Griebl, Viktoryia Lapidus, Anton Mauder, Christian Philipp Sandow, Antonio Vellei
  • Publication number: 20220140135
    Abstract: A power semiconductor device includes: a semiconductor body; a control electrode at least partially on or inside the semiconductor body; elevated source regions in the semiconductor body adjacent to the control electrode; recessed body regions adjacent to the elevated source regions; and a dielectric layer arranged on a portion of a surface of the semiconductor body and defining a contact hole. The contact hole is at least partially filled with a conductive material establishing an electrical contact with at least a portion of the elevated source regions and at least a portion of the recessed body regions. At least one first contact surface between at least one elevated source region and the dielectric layer extends in a first horizontal plane. At least one second contact surface between at least one recessed body region and the dielectric layer extends in a second horizontal plane located vertically below the first horizontal plane.
    Type: Application
    Filed: January 17, 2022
    Publication date: May 5, 2022
    Inventors: Erich Griebl, Markus Beninger-Bina, Matteo Dainese, Ingo Dirnstorfer
  • Patent number: 11257946
    Abstract: A method of forming a power semiconductor device includes: arranging a control electrode at least partially on or inside a semiconductor body; forming elevated source regions in the semiconductor body by: implanting first conductivity type dopants into the semiconductor body; forming a recess mask layer covering at least areas of intended source regions; and removing portions of the semiconductor body uncovered by the recess mask layer to form the elevated source regions and recessed body regions at least partially between the source regions. A dielectric layer is formed on the semiconductor body. A contact hole mask layer is formed on the dielectric layer. Portions of the dielectric layer uncovered by the contact hole mask layer are removed to form a contact hole which is filled at least partially with a conductive material to establish an electrical contact with at least a portion of the elevated source and recessed body regions.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: February 22, 2022
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Erich Griebl, Markus Beninger-Bina, Matteo Dainese, Ingo Dirnstorfer
  • Publication number: 20210313460
    Abstract: A power semiconductor switch includes an active cell region with a drift region, an edge termination region, and IGBT cells within the active cell region. Each IGBT cell includes trenches that extend into the drift region and laterally confine mesas. At least one control trench has a control electrode for controlling the load current. At least one dummy trench has a dummy electrode electrically coupled to the control electrode. At least one further trench has a further trench electrode. At least one active mesa is electrically connected to a first load terminal within the active cell region. Each control trench is arranged adjacent to no more than one active mesa. At least one inactive mesa is adjacent to the dummy trench. A cross-trench structure merges each control trench, dummy trench and further trench to each other. The cross-trench structure overlaps at least partially along a vertical direction with the trenches.
    Type: Application
    Filed: June 17, 2021
    Publication date: October 7, 2021
    Inventors: Matteo Dainese, Alexander Philippou, Markus Beninger-Bina, Ingo Dirnstorfer, Erich Griebl, Christian Jaeger, Johannes Georg Laven, Caspar Leendertz, Frank Dieter Pfirsch
  • Publication number: 20210296479
    Abstract: An RC IGBT includes, in an active region, an IGBT section and at least three diode sections. The arrangement of the diode sections obeys a design rule.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 23, 2021
    Inventors: Frank Dieter Pfirsch, Erich Griebl, Viktoryia Lapidus, Anton Mauder, Christian Philipp Sandow, Antonio Vellei
  • Publication number: 20210272843
    Abstract: A power semiconductor device includes: first and second trenches extending from a surface of a semiconductor body along a vertical direction and laterally confining a mesa region along a first lateral direction; source and body regions in the mesa region electrically connected to a first load terminal; and a first insulation layer having a plurality of insulation blocks, two of which laterally confine a contact hole. The first load terminal extends into the contact hole to contact the source and body regions at the mesa region surface. A first insulation block laterally overlaps with the first trench. A second insulation block laterally overlaps with the second trench. The first insulation block has a first lateral concentration profile of a first implantation material of the source region along the first lateral direction that is different from a corresponding second lateral concentration profile for the second insulation block.
    Type: Application
    Filed: May 20, 2021
    Publication date: September 2, 2021
    Inventors: Markus Beninger-Bina, Matteo Dainese, Ingo Dirnstorfer, Erich Griebl, Johannes Georg Laven, Anton Mauder, Hans-Joachim Schulze
  • Patent number: 11075290
    Abstract: A power semiconductor device includes an active region surrounded by an inactive termination region each formed by part of a semiconductor body. The active region conducts load current between first and second load terminals. At least one power cell has trenches extending into the semiconductor body adjacent to each other along a first lateral direction and having a stripe configuration that extends along a second lateral direction into the active region. The trenches spatially confine a plurality of mesas each having at least one first type mesa electrically connected to the first load terminal and configured to conduct at least a part of the load current, and at least one second type mesa configured to not conduct the load current. A decoupling structure separates at least one of the second type mesas into a first section in the active region and a second section in the termination region.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: July 27, 2021
    Assignees: Infineon Technologies AG, Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Matteo Dainese, Alexander Philippou, Markus Bina, Ingo Dirnstorfer, Erich Griebl, Christian Jaeger, Johannes Georg Laven, Caspar Leendertz, Frank Dieter Pfirsch
  • Patent number: 11018051
    Abstract: A method includes: forming trenches extending from a surface along a vertical direction into a semiconductor body, facing trench sidewalls of two adjacent trenches laterally confining a mesa region of the semiconductor body along a first lateral direction; forming a body region in the mesa region, a surface of the body region in the mesa region at least partially forming the semiconductor body surface; forming a first insulation layer on the semiconductor body surface; subjecting the semiconductor body region to a tilted source implantation using at least one contact hole in the first insulation layer at least partially as a mask for forming a semiconductor source region in the mesa region. The tilted source implantation is tilted from the vertical direction by an angle of at least 10°. The semiconductor source region extends for no more than 80% of a width of the mesa region along the first lateral direction.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: May 25, 2021
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Markus Beninger-Bina, Matteo Dainese, Ingo Dirnstorfer, Erich Griebl, Johannes Georg Laven, Anton Mauder, Hans-Joachim Schulze
  • Patent number: 11011629
    Abstract: A power semiconductor switch includes a cross-trench structure associated with at least one IGBT cell. The cross-trench structure merge at least one control trench, at least one dummy trench and at least one further trench of at least one IGBT cell to each other. The cross-trench structure overlaps at least partially along a vertical direction with trenches of the at least one IGBT-cell.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: May 18, 2021
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Markus Beninger-Bina, Matteo Dainese, Ingo Dirnstorfer, Erich Griebl, Caspar Leendertz, Christian Philipp Sandow
  • Publication number: 20200235235
    Abstract: A method of forming a power semiconductor device includes: arranging a control electrode at least partially on or inside a semiconductor body; forming elevated source regions in the semiconductor body by: implanting first conductivity type dopants into the semiconductor body; forming a recess mask layer covering at least areas of intended source regions; and removing portions of the semiconductor body uncovered by the recess mask layer to form the elevated source regions and recessed body regions at least partially between the source regions. A dielectric layer is formed on the semiconductor body. A contact hole mask layer is formed on the dielectric layer. Portions of the dielectric layer uncovered by the contact hole mask layer are removed to form a contact hole which is filled at least partially with a conductive material to establish an electrical contact with at least a portion of the elevated source and recessed body regions.
    Type: Application
    Filed: January 8, 2020
    Publication date: July 23, 2020
    Inventors: Erich Griebl, Markus Beninger-Bina, Matteo Dainese, Ingo Dirnstorfer
  • Publication number: 20200227518
    Abstract: A semiconductor device includes a plurality of first and second stripe-shaped cell trench structures formed in a semiconductor substrate and extending lengthwise in parallel with one another. Each stripe-shaped cell trench structure includes a buried electrode and an insulator layer between the buried electrode and the semiconductor substrate. A recess is formed in the insulator layer along a sidewall of one or more of the first stripe-shaped cell trench structures and vertically extends to a corresponding heavily doped contact zone. An electrically conductive material disposed in each recess contacts the corresponding buried electrode, a corresponding source zone and a corresponding heavily doped contact zone at the sidewall. Two or more of the first stripe-shaped cell trench structures are interposed between neighboring ones of the second stripe-shaped cell trench structures. Source zones alternate with portions of body zones in a lateral direction parallel to the stripe-shaped cell trench structures.
    Type: Application
    Filed: March 24, 2020
    Publication date: July 16, 2020
    Inventors: Johannes Georg Laven, Maria Cotorogea, Hans-Joachim Schulze, Haybat Itani, Erich Griebl, Andreas Haghofer
  • Publication number: 20200168727
    Abstract: A power semiconductor switch includes a cross-trench structure associated with at least one IGBT cell. The cross-trench structure merge at least one control trench, at least one dummy trench and at least one further trench of at least one IGBT cell to each other. The cross-trench structure overlaps at least partially along a vertical direction with trenches of the at least one IGBT-cell.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 28, 2020
    Inventors: Markus Beninger-Bina, Matteo Dainese, Ingo Dirnstorfer, Erich Griebl, Caspar Leendertz, Christian Philipp Sandow
  • Patent number: 10629676
    Abstract: First and second cell trench structures extend from a first surface into a semiconductor substrate. The first cell trench structure includes a first buried electrode and a first insulator layer between the first buried electrode and a semiconductor mesa separating the first and second cell trench structures. A capping layer covers the first surface. The capping layer is patterned to form an opening having a minimum width larger than a thickness of the first insulator layer. The opening exposes a first vertical section of the first insulator layer at the first surface. An exposed portion of the first insulator layer is removed to form a recess between the semiconductor mesa and the first buried electrode. A contact structure is in the opening and the recess. The contact structure electrically connects both a buried zone in the semiconductor mesa and the first buried electrode and allows for narrower semiconductor mesa width.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: April 21, 2020
    Assignee: Infineon Technologies AG
    Inventors: Johannes Georg Laven, Maria Cotorogea, Hans-Joachim Schulze, Haybat Itani, Erich Griebl, Andreas Haghofer
  • Patent number: 10600862
    Abstract: A power semiconductor device includes a semiconductor body coupled to first and second load terminals and including a drift region with dopants of a first conductivity type. An active region has at least one power cell extending at least partially into the semiconductor body, is electrically connected with the first load terminal and includes a part of the drift region. Each power cell includes a section of the drift region and is configured to conduct a load current between the terminals and to block a blocking voltage applied between the terminals. A chip edge laterally terminates the semiconductor body. A non-active termination structure arranged in between the chip edge and active region includes an ohmic layer. The ohmic layer is arranged above a surface of the semiconductor body, forms an ohmic connection between electrical potentials of the first and second load terminals, and is laterally structured along the ohmic connection.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: March 24, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Erich Griebl, Frank Wolter, Andreas Moser, Manfred Pfaffenlehner