Patents by Inventor Erik Anders

Erik Anders has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210181891
    Abstract: A method for interacting with controls in a graphical user interface (GUI), including recording user interface gestures performed by a user, for each recorded gesture: when the gesture includes the user virtually touching a specific GUI control, applying the gesture to the specific GUI control; and when the gesture is performed without the user virtually touching a specific GUI control, identifying a particular GUI control that the user is gazing at and applying the gesture to that particular GUI control.
    Type: Application
    Filed: February 15, 2021
    Publication date: June 17, 2021
    Inventors: Björn Thomas Eriksson, Sven Robert Pettersson, Stefan Johannes Holmgren, Xiatao Wang, Rozita Teymourzadeh, Per Erik Lindström, Emil Anders Braide, Jonas Daniel Justus Hjelm, Erik Anders Claes Rosengren
  • Patent number: 10956659
    Abstract: Multiple webpages are used to generate a template that includes portions of webpage code or other instructions common to the webpages, and a view model for each webpage that indicates instructions that may be added to the template to reconstruct the webpage. A first webpage and a second webpage are analyzed to generate a first set of tokens that represent instructions for the first webpage and a second set of tokens that represent instructions for the second webpage. The sets of tokens are compared to determine matching and differing instructions between the webpages. A template is generated that includes the matching portions of instructions and placeholders at locations associated with differences. A view model for each webpage is generated that includes a value for each placeholder, the value being the instructions that may be added to the template at the location of the placeholder to reconstruct the webpage.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: March 23, 2021
    Assignee: AMAZON TECHNOLOGIES, INC.
    Inventors: Michael Carey Wexler, Erik Anders Karulf
  • Publication number: 20210081053
    Abstract: A contactless input method for an electronic device or other equipment, including projecting focused light beams from a series of locations along an edge of a control panel including a matrix of controls for an electronic device or other equipment, across a plane in an airspace in front of the controls, whereby the projected light beams traverse an area equal in size to the area of the matrix, detecting reflections of the projected light beams reflected by an object inserted into the plane, identifying which light beams are reflected, further identifying an angle at which the detected light beams are reflected, calculating a location in the plane at which the object is inserted based on the detecting, identifying and further identifying, and outputting the calculated location from the sensor to the electronic device or other equipment as an actuated corresponding location on the control panel.
    Type: Application
    Filed: October 6, 2020
    Publication date: March 18, 2021
    Inventors: Björn Thomas Eriksson, Björn Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain
  • Patent number: 10928957
    Abstract: A sensor including lenses, light emitters, each emitter projecting light out of a lens in a particular emission direction along a detection plane, light detectors, each detector detecting maximum light intensity when light enters a lens at a particular detection angle, a table of hotspots, each hotspot corresponding to an emitter-detector pair, the hotspot being a two-dimensional location in the detection plane along the emission direction of the emitter of the pair where projected light reflected by an object placed at that location, enters the lens for the detector of the pair at the detection angle of the detector, and a processor receiving outputs from the detectors corresponding to detected amounts of projected light reflected by an object in the detection plane, and calculating a two-dimensional location of the object in the detection plane based on the received outputs and based on hotspots for synchronously activated emitter-detector pairs.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: February 23, 2021
    Assignee: NEONODE INC.
    Inventors: Björn Thomas Eriksson, Sven Robert Pettersson, Stefan Johannes Holmgren, Xiatao Wang, Rozita Teymourzadeh, Per Erik Lindström, Emil Anders Braide, Jonas Daniel Justus Hjelm, Erik Anders Claes Rosengren
  • Patent number: 10802601
    Abstract: A sensor, including light emitters projecting directed light beams, light detectors interleaved with the light emitters, lenses, each lens oriented relative to a respective one of the light detectors such that the light detector receives maximum intensity when light enters the lens at an angle b, whereby, for each emitter E, there exist corresponding target positions p(E, D) along the path of the light from emitter E, at which an object located at any of the target positions reflects the light projected by emitter E towards a respective one of detectors D at angle b, and a processor storing a reflection value R(E, D) for each co-activated emitter-detector pair (E, D), based on an amount of light reflected by an object located at p(E, D) and detected by detector D, and calculating a location of an object based on the reflection values and target positions.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: October 13, 2020
    Assignee: Neonode Inc.
    Inventors: Björn Thomas Eriksson, Björn Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain
  • Publication number: 20200167034
    Abstract: A sensor including lenses, light emitters, each emitter projecting light out of a lens in a particular emission direction along a detection plane, light detectors, each detector detecting maximum light intensity when light enters a lens at a particular detection angle, a table of hotspots, each hotspot corresponding to an emitter-detector pair, the hotspot being a two-dimensional location in the detection plane along the emission direction of the emitter of the pair where projected light reflected by an object placed at that location, enters the lens for the detector of the pair at the detection angle of the detector, and a processor receiving outputs from the detectors corresponding to detected amounts of projected light reflected by an object in the detection plane, and calculating a two-dimensional location of the object in the detection plane based on the received outputs and based on hotspots for synchronously activated emitter-detector pairs.
    Type: Application
    Filed: January 28, 2020
    Publication date: May 28, 2020
    Inventors: Björn Thomas Eriksson, Sven Robert Pettersson, Stefan Johannes Holmgren, Xiatao Wang, Rozita Teymourzadeh, Per Erik Lindström, Emil Anders Braide, Jonas Daniel Justus Hjelm, Erik Anders Claes Rosengren
  • Publication number: 20200150823
    Abstract: A sensor including multiple sensor modules and a processor, each sensor module including lenses, light detectors, each detector positioned along the image plane of a lens so as to receive maximum light intensity when light enters the lens at a particular angle, light emitters, each emitter being positioned in relation to a lens so as to project light into a detection zone, an activating unit synchronously co-activating each emitter with at least one of the detectors, and a calculating unit receiving outputs from the detectors corresponding to amounts of projected light reflected by an object in the detection zone to the detectors, and calculating a two-dimensional location of the object in the detection zone based on the detector outputs and the particular angle, wherein neighboring modules monitor different detection zones, and the processor receiving outputs from the sensor modules and mapping the object location in multiple detection zones over time.
    Type: Application
    Filed: January 10, 2020
    Publication date: May 14, 2020
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Patent number: 10614632
    Abstract: Systems and methods for massive model visualization in product data management (PDM) systems. A method includes receiving 3D rendering data for a product from a PDM server system by a visualization data server (VDS) on a PDM client system network. The method includes synchronizing and updating the 3D rendering data by the VDS according to changes on the PDM server system. The method includes computing spatial hierarchies from the 3D rendering data by the VDS. The method includes serving the 3D rendering data, by the VDS, to at least one rendering machine on the PDM client system network.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: April 7, 2020
    Assignee: Siemens Industry Software Inc.
    Inventors: Guy Roetcisoender, Andreas Hugo Walter Johanssen, Michael B. Carter, Javeed Nizami, Erik Anders Sjoblom, Jianbing Huang, Balaji Venkatasubramaniam
  • Publication number: 20200089326
    Abstract: A sensor, including light emitters projecting directed light beams, light detectors interleaved with the light emitters, lenses, each lens oriented relative to a respective one of the light detectors such that the light detector receives maximum intensity when light enters the lens at an angle b, whereby, for each emitter E, there exist corresponding target positions p(E, D) along the path of the light from emitter E, at which an object located at any of the target positions reflects the light projected by emitter E towards a respective one of detectors D at angle b, and a processor storing a reflection value R(E, D) for each co-activated emitter-detector pair (E, D), based on an amount of light reflected by an object located at p(E, D) and detected by detector D, and calculating a location of an object based on the reflection values and target positions.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Björn Thomas Eriksson, Björn Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain
  • Patent number: 10585530
    Abstract: A method for identifying a proximal object, including providing light emitters, light detectors and lenses, mounted in a housing, each lens, denoted L, being positioned in relation to a respective one of the detectors, denoted D, such that light entering lens L is maximally detected at detector D when the light enters lens L at an angle of incidence ?, activating the detectors synchronously with activation of each emitter to measure reflections of the light beams emitted by each emitter, and calculating a location of a reflective object along a path of a light beam projected by an activated emitter, by calculating an axis of symmetry with respect to which the outputs of the synchronously activated detectors are approximately symmetric, orienting the calculated axis of symmetry by the angle ?, and locating a point of intersection of the path of the emitted light beam with the oriented axis of symmetry.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: March 10, 2020
    Assignee: Neonode Inc.
    Inventors: Björn Thomas Eriksson, Sven Robert Pettersson, Stefan Johannes Holmgren, Xiatao Wang, Rozita Teymourzadeh, Per Erik Lindström, Emil Anders Braide, Jonas Daniel Justus Hjelm, Erik Anders Claes Rosengren
  • Patent number: 10534479
    Abstract: A proximity sensor, including a housing, an array of lenses mounted in the housing, an array of alternating light emitters and light detectors mounted in the housing, each detector being positioned along the image plane of a respective one of the lenses so as to receive maximum light intensity when light enters the lens at a particular angle, an activating unit mounted in the housing and connected to the emitters and detectors, synchronously co-activating each emitter with at least one of the detectors, each activated emitter projecting light out of the housing along a detection plane, and a processor receiving outputs from the detectors corresponding to amounts of projected light reflected by an object in the detection plane to the detectors, and calculating a two-dimensional location of the object in the detection plane based on the detector outputs and the particular angle.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: January 14, 2020
    Assignee: Neonode Inc.
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Patent number: 10496180
    Abstract: A proximity sensor including a housing, light emitters mounted in the housing for projecting light out of the housing along a detection plane, light detectors mounted in the housing for detecting amounts of light entering the housing along the detection plane, whereby for each emitter-detector pair (E, D), when an object is located at a target position p(E, D) in the detection plane, corresponding to the pair (E, D), then the light emitted by emitter E is scattered by the object and is expected to be maximally detected by detector D, and a processor to synchronously activate emitter-detector pairs, to read the detected amounts of light from the detectors, and to calculate a location of the object in the detection plane from the detected amounts of light, in accordance with a detection-location relationship that relates detections from emitter-detector pairs to object locations between neighboring target positions in the detection plane.
    Type: Grant
    Filed: February 18, 2018
    Date of Patent: December 3, 2019
    Assignee: Neonode, Inc.
    Inventors: Björn Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Simon Greger Fellin, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Richard Tom Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain, Oskar Bertil Hagberg, Joel Verner Rozada
  • Patent number: 10437547
    Abstract: A device includes a first processor and a first display coupled to the first processor, the first processor being configured to generate first display data, pertaining to elements of a first active application currently being executed on the device, for display on the first display, and generate link data pertaining to a subset of the elements of the first active application; wherein the first processor is configured to output the generated link data to a second display. A system and method pertaining to the device are also described.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: October 8, 2019
    Assignee: BlackBerry Limited
    Inventors: Daniel Tobias Rydenhag, Per Åke Daniel Johansson, Per Erik Anders Jorisch
  • Patent number: 10370903
    Abstract: A drill bit assembly includes a drill bit body, an insulating layer disposed on an end of the drill bit body and that defines a drill bit face and two electrodes formed such that they both extend from the drill bit face. The two electrodes form a spiral on the drill bit face and are equidistant from each other at all locations of the drill bit face.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: August 6, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Joerg Lehr, Erik Anders
  • Publication number: 20190221047
    Abstract: Some embodiments provide a mapping application that displays a rotation of a 3D map and corresponding rotation of a set of map labels overlaying the 3D map in response to receiving input to rotate the 3D map. When a particular map label in the set of map labels rotates towards an upside down orientation, the mapping application also replaces the particular map label with a version of the particular map label arranged in a right side up orientation to prevent the particular map label from being displayed in the upside down orientation in the 3D map.
    Type: Application
    Filed: March 22, 2019
    Publication date: July 18, 2019
    Applicant: Apple Inc.
    Inventors: Erik Anders Mikael Adlers, Christopher F. Marrin, Elisabeth Lindkvist, Jeffrey Paul McCurdy Hultquist, Ian MacDonald Henderson, II
  • Patent number: 10289662
    Abstract: A device and method are provided for receiving and presenting input content. The device initially displays an input screen including a user action interface region having a first input field having a first fixed width and a fixed height. When overflowing content is detected, the first input field is replaced with at least one user interface element, and the first input field is translated and expanded to a new second position substantially non-overlapping with the first, the new input field being larger in width than the original input field.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: May 14, 2019
    Assignee: BLACKBERRY LIMITED
    Inventors: Erik Artur Greisson, Per Erik Anders Jorisch
  • Patent number: 10282916
    Abstract: Some embodiments provide a mapping application that displays a rotation of a 3D map and corresponding rotation of a set of map labels overlaying the 3D map in response to receiving input to rotate the 3D map. When a particular map label in the set of map labels rotates towards an upside down orientation, the mapping application also replaces the particular map label with a version of the particular map label arranged in a right side up orientation to prevent the particular map label from being displayed in the upside down orientation in the 3D map.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: May 7, 2019
    Assignee: Apple Inc.
    Inventors: Erik Anders Mikael Adlers, Christopher F. Marrin, Elisabeth Lindkvist, Jeffrey Paul McCurdy Hultquist, Ian MacDonald Henderson, II
  • Publication number: 20180181209
    Abstract: A proximity sensor including a housing, light emitters mounted in the housing for projecting light out of the housing along a detection plane, light detectors mounted in the housing for detecting amounts of light entering the housing along the detection plane, whereby for each emitter-detector pair (E, D), when an object is located at a target position p(E, D) in the detection plane, corresponding to the pair (E, D), then the light emitted by emitter E is scattered by the object and is expected to be maximally detected by detector D, and a processor to synchronously activate emitter-detector pairs, to read the detected amounts of light from the detectors, and to calculate a location of the object in the detection plane from the detected amounts of light, in accordance with a detection-location relationship that relates detections from emitter-detector pairs to object locations between neighboring target positions in the detection plane.
    Type: Application
    Filed: February 18, 2018
    Publication date: June 28, 2018
    Inventors: Björn Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Simon Greger Fellin, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Richard Tom Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain, Oskar Bertil Hagberg, Joel Verner Rozada
  • Patent number: 9976369
    Abstract: A round-trip autoclave sample-extracting device for extracting a sample at a sample extraction location of a geological formation, the device includes a self-closing pressure chamber module for receiving the sample. The pressure chamber module is connected to a lifting module in order to lift the sample into the pressure chamber module in one sampling stroke. The round-trip autoclave sample-extracting device has a triggering module and a pressure regulating module, the triggering module acting on the lifting module in order to trigger the sampling stroke, and the pressure regulating module is coupled to the pressure chamber module at least on the pressure side after the sampling stroke in order to influence a pressure in the pressure chamber module. A round-trip method is proposed which includes a first trip and at least one second trip for extracting a sample while maintaining a pressure that is present at the sample extraction location.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: May 22, 2018
    Assignee: CORSYDE INTERNATIONAL GMBH & CO. KG
    Inventors: Tobias Rothenwaender, David Wunsch, Erik Anders, Martin Rothfuss, Benjamin Arnold, Alexander Schulze
  • Publication number: 20170204669
    Abstract: A drill bit assembly includes a drill bit body, an insulating layer disposed on an end of the drill bit body and that defines a drill bit face and two electrodes formed such that they both extend from the drill bit face. The two electrodes form a spiral on the drill bit face and are equidistant from each other at all locations of the drill bit face.
    Type: Application
    Filed: January 20, 2017
    Publication date: July 20, 2017
    Applicant: Baker Hughes Incorporated
    Inventors: Joerg Lehr, Erik Anders