Patents by Inventor Erik R. Scott

Erik R. Scott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200384259
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20200384260
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer seal is positioned in the joint in various embodiments. Other embodiments of an IMD housing are disclosed.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C. M. Pape, Joel A. Anderson, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Publication number: 20200384261
    Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 10, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C.M. Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Patent number: 10862328
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue. In one example, a temperature sensor may sense a temperature of a portion of a device, wherein the portion is non-thermally coupled to the temperature sensor. A processor may then control charging of the rechargeable power source based on the sensed temperature.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: December 8, 2020
    Assignee: Medtronic, Inc.
    Inventors: Peng Cong, Venkat R. Gaddam, David P. Olson, Erik R. Scott, Todd V. Smith, Leroy L. Perz
  • Publication number: 20200376255
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 3, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Publication number: 20200376259
    Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 3, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20200376257
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 3, 2020
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, Eric H. Bonde, Erik R. Scott, Gabriela C. Molnar, Gordon O. Munns, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Thomas P. Miltich, Todd V. Smith, Xuan K. Wei
  • Publication number: 20200376258
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 3, 2020
    Inventors: Erik R. Scott, John E. Kast, Xuan K. Wei, Todd V. Smith, Joel A. Anderson, Forrest C. M. Pape, Duane L. Bourget, Timothy J. Denison, David A. Dinsmoor, Randy S. Roles, Stephen J. Roddy
  • Publication number: 20200376256
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Application
    Filed: August 25, 2020
    Publication date: December 3, 2020
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Patent number: 10792488
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: October 6, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Brad C. Tischendorf, Eric H. Bonde, Phillip C. Falkner, John E. Kast, Randy S. Roles, Erik R. Scott, Todd V. Smith, Xuan K. Wei, Anthony M. Chasensky, Michael J. Ebert, Shawn C. Kelley, Gabriela C. Molnar, Richard T. Stone
  • Patent number: 10784705
    Abstract: In some examples, a medical device system includes a first implantable medical device. The first implantable medical device (IMD) may comprise circuitry configured to at least one of deliver a therapy to a patient or sense a physiological signal from the patient; generate stimulation deliverable to a patient; a first rechargeable power source; and a secondary coil coupled to the first rechargeable power source, the secondary coil configured to charge the first rechargeable power source via inductive coupling with a primary coil of an external charging device. The medical device system may comprise processing circuitry configured to control charging of the first rechargeable power source based on a charge state of a second rechargeable power source of a second IMD.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: September 22, 2020
    Assignee: Medtronic, Inc.
    Inventors: Erik R. Scott, David A. Dinsmoor, Venkat R. Gaddam
  • Publication number: 20200155853
    Abstract: A lead connector assembly includes a lead receptacle, a sleeve, and a handle for coupling to a medical lead. The lead receptacle has an inner surface and an opening configured to receive the lead. The sleeve is deflectable by the inner surface of the lead receptacle. The sleeve has a distal end portion defining a first outer diameter to engage the lead in a locked position and a second outer diameter greater than the first diameter in an unlocked position. The handle is coupled to the lead receptacle and a proximal end portion of the sleeve to move the sleeve axially in both directions along the longitudinal axis relative to the lead receptacle. The lead connector assembly retains the lead in the locked position. The lead receptacle is couplable to a medical device housing.
    Type: Application
    Filed: March 14, 2018
    Publication date: May 21, 2020
    Inventors: Rajesh V. Iyer, Randy S. Roles, Erik R. Scott, Andrew J. Thom
  • Patent number: 10615463
    Abstract: A method of charging a battery includes applying a charging voltage to a lithium-ion battery for a period of time after the battery is fully charged. The battery includes a positive electrode having a positive active material, a negative electrode having a negative active material, and an electrolyte. The negative active material includes a lithium titanate material and has a capacity that is less than that of the positive electrode. The charging voltage is greater than a fully charged voltage of the battery, and applying the charging voltage for the period of time is sufficient to cause a zero volt crossing potential of the battery to increase to above a decomposition potential of the positive active material.
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: April 7, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Erik R. Scott, Gaurav Jain
  • Publication number: 20190334367
    Abstract: In some examples, a medical device system includes a first implantable medical device. The first implantable medical device (IMD) may comprise circuitry configured to at least one of deliver a therapy to a patient or sense a physiological signal from the patient; generate stimulation deliverable to a patient; a first rechargeable power source; and a secondary coil coupled to the first rechargeable power source, the secondary coil configured to charge the first rechargeable power source via inductive coupling with a primary coil of an external charging device. The medical device system may comprise processing circuitry configured to control charging of the first rechargeable power source based on a charge state of a second rechargeable power source of a second IMD.
    Type: Application
    Filed: April 27, 2018
    Publication date: October 31, 2019
    Inventors: Erik R. Scott, David A. Dinsmoor, Venkat R. Gaddam
  • Publication number: 20190290911
    Abstract: In some examples, an implantable medical device (IMD) including a hermetically sealed housing that is configured to enclose internal components. The internal components may include stimulation circuitry, processing circuitry configured to control the stimulation circuitry to deliver electrical stimulation using one or more leads received by the housing, telemetry circuitry, and a rechargeable power source. The IMD may also include a coil configured to at least one of receive energy to recharge the rechargeable power source or receive and/or transmit signals for wireless telemetry with another device, wherein the implantable medical device is configured to mount to a cranium of a patient, and wherein the coil is coiled about an axis that is approximately orthogonal to a major surface of the IMD.
    Type: Application
    Filed: March 21, 2019
    Publication date: September 26, 2019
    Inventors: Nicholas R. Whitehead, Venkat R. Gaddam, Erik R. Scott, Randy S. Roles, Don A. Rutledge
  • Publication number: 20190282818
    Abstract: In some examples, an implantable medical device includes an implantable housing, a neurostimulator within the housing, a plurality of electrodes, an implantable lead coupled to the housing, and an actuator formed with the housing. The implantable lead includes at least one electrode of the plurality of electrodes and one or more conductors coupling the at least one electrode to the neurostimulator. The actuator is configured to cause at least a portion of the implantable lead to deflect.
    Type: Application
    Filed: May 14, 2019
    Publication date: September 19, 2019
    Inventors: Eric H. Bonde, John E. Kast, Erik R. Scott, Xuan K. Wei
  • Patent number: 10328271
    Abstract: In some examples, an implantable medical device includes an implantable housing, a neurostimulator within the housing, a plurality of electrodes, an implantable lead coupled to the housing, and an actuator formed with the housing. The implantable lead includes at least one electrode of the plurality of electrodes and one or more conductors coupling the at least one electrode to the neurostimulator. The actuator is configured to cause at least a portion of the implantable lead to deflect.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: June 25, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Eric H. Bonde, John E. Kast, Erik R. Scott, Xuan K. Wei
  • Publication number: 20190183472
    Abstract: A medical device system for delivering a neuromodulation therapy includes a delivery tool for deploying an implantable medical device at a neuromodulation therapy site. The implantable medical device includes a housing, an electronic circuit within the housing, and an electrical lead comprising a lead body extending between a proximal end coupled to the housing and a distal end extending away from the housing and at least one electrode carried by the lead body. The delivery tool includes a first cavity for receiving the housing and a second cavity for receiving the lead. The first cavity and the second cavity are in direct communication for receiving and deploying the housing and the lead coupled to the housing concomitantly as a single unit.
    Type: Application
    Filed: February 21, 2019
    Publication date: June 20, 2019
    Inventors: Brad C. Tischendorf, Eric H. Bonde, Phillip C. Falkner, John E. Kast, Randy S. Roles, Erik R. Scott, Todd V. Smith, Xuan K. Wei, Anthony M. Chasensky, Michael J. Ebert, Shawn C. Kelley, Gabriela C. Molnar, Richard T. Stone
  • Publication number: 20190126028
    Abstract: An implantable medical device (IMD) has a housing enclosing an electronic circuit. The housing includes a first housing portion, a second housing portion and a joint coupling the first housing portion to the second housing portion. A polymer seal is positioned in the joint in various embodiments. Other embodiments of an IMD housing are disclosed.
    Type: Application
    Filed: December 26, 2018
    Publication date: May 2, 2019
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde
  • Patent number: 10258804
    Abstract: Devices, systems, and techniques are configured for cooling tissue during recharge of an implantable medical device (IMD) battery. In one example, a method includes charging, by an inductive charger, a rechargeable battery of an implantable medical device (IMD) within a patient, wherein the IMD comprises a housing that houses the rechargeable battery, and wherein a primary coil of the inductive charger is positioned above a region of skin of the patient proximate to the IMD. The example method further includes cooling, by a heat exchanger, the region of skin below a normal ambient surface temperature of the region of skin, wherein the heat exchanger is interposed between the primary coil and the region of skin.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: April 16, 2019
    Assignee: Medtronic, Inc.
    Inventors: Erik R. Scott, Kunal Paralikar