Patents by Inventor Erik R. Scott

Erik R. Scott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090286158
    Abstract: A lithium-ion battery includes a positive electrode that includes a positive current collector, a first active material, and a second active material. The lithium-ion battery also includes a negative electrode comprising a negative current collector, a third active material, and a quantity of lithium in electrical contact with the negative current collector. The first active material, second active material, and third active materials are configured to allow doping and undoping of lithium ions, and the second active material exhibits charging and discharging capacity below a corrosion potential of the negative current collector and above a decomposition potential of the first active material.
    Type: Application
    Filed: July 28, 2009
    Publication date: November 19, 2009
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Publication number: 20090286151
    Abstract: A lithium-ion battery includes a positive electrode having an active material and a polymeric separator configured to allow electrolyte and lithium ions to flow between a first side of the separator and an opposite second side of the separator. The battery also includes a liquid electrolyte having a lithium salt dissolved in at least one non-aqueous solvent and a negative electrode having a lithium titanate active material. The positive electrode has a first capacity and the negative electrode has a second capacity that is less than the first capacity.
    Type: Application
    Filed: May 21, 2009
    Publication date: November 19, 2009
    Inventors: Erik R. Scott, William G. Howard, Craig L. Schmidt
  • Patent number: 7616995
    Abstract: Implantable medical device adapted to provide a therapeutic output to a patient. A therapy module, operatively coupled to a battery, is adapted to provide the therapeutic output. A control circuit provides an action indicative of recharging the battery when the voltage of the battery reaches a recharge voltage wherein the recharge voltage is varied as the battery ages. Also a method of providing a therapeutic output to a patient using an implantable medical device having a battery having a voltage. An action indicative of recharging the battery is provided when the voltage of the battery reaches a recharge voltage. The recharge voltage is varied as the battery ages.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: November 10, 2009
    Assignee: Medtronic, Inc.
    Inventors: Carl D. Wahlstrand, Robert M. Skime, Erik R. Scott, Craig L. Schmidt
  • Publication number: 20090274849
    Abstract: A method for producing a battery includes providing a battery having a positive electrode, a negative electrode, and an electrolyte that includes a solvent and a salt. The capacity of the negative electrode is less than that of the positive electrode and the negative electrode includes an active material having an average potential versus a lithium reference electrode of greater than approximately 0.2 volts. The method also includes applying an initial charge to the battery at a voltage that is greater than a fully charged voltage of the battery for a sufficient amount of time to cause at least a portion of the solvent to undergo a reduction reaction. The step of applying an initial charge to the battery acts to increase the irreversible capacity loss of the battery during the initial charge and provides the battery with enhanced tolerance to deep discharge conditions.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 5, 2009
    Inventors: Erik R. Scott, Gaurav Jain
  • Patent number: 7596408
    Abstract: An implantable medical device with anti-infection agent. The implantable medical device may be configured for placement in the head of a patient and for monitoring or treatment of the brain. The implantable medical device may have a housing or it may have a housing and a member for providing a smooth interface between the device and the adjacent tissue. The anti-infection agent may be provided on or impregnated in the housing or the member. In some embodiments, the device includes a single module while in other embodiments a plurality of modules are coupled to provide a smaller profile. In some embodiments the implantable medical device may include both anti-infection and lubricious materials.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: September 29, 2009
    Assignee: Medtronic, Inc.
    Inventors: Ruchika Singhal, Darren A. Janzig, Carl D. Wahlstrand, Robert M. Skime, Paulette C. Olson, Erik R. Scott, James E. Randall
  • Patent number: 7582387
    Abstract: A lithium-ion battery includes a positive electrode that includes a positive current collector, a first active material, and a second active material. The lithium-ion battery also includes a negative electrode comprising a negative current collector, a third active material, and a quantity of lithium in electrical contact with the negative current collector. The first active material, second active material, and third active materials are configured to allow doping and undoping of lithium ions, and the second active material exhibits charging and discharging capacity below a corrosion potential of the negative current collector and above a decomposition potential of the first active material.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: September 1, 2009
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Publication number: 20090208845
    Abstract: A lithium-ion battery includes a positive electrode that has a current collector and a first active material and a negative electrode that has a current collector, a second active material, and a third active material. The second active material includes a lithium titanate material and the third active material is a material that can be one or more of the following: LiMn2O4, LixVO2 where x is between 0.05 and 0.4, LiMxMn(2-x)O4 where M is a metal and x is less than or equal to 1, V6O13, V2O5, V3O8, MoO3, TiS2, WO2, MoO2, RuO2, and combinations thereof. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Application
    Filed: April 23, 2009
    Publication date: August 20, 2009
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Patent number: 7563541
    Abstract: A battery includes a positive electrode including a current collector and a first active material and a negative electrode including a current collector, a second active material, and a third active material. The first active material, second active material, and third active material are configured to allow doping and undoping of lithium ions. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: July 21, 2009
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Patent number: 7529586
    Abstract: At least one surface of an implantable medical device is concave along at least one axis such that it substantially conforms to a surface within a patient, such as the cranium, when it is implanted on that surface. In some embodiments, the surface of the implantable medical device substantially conforms to an arc with a radius that is between 4.5 and 9.5 centimeters, and is preferably approximately equal to 7 centimeters. In some embodiments, the implantable medical device comprises a plurality of interconnected modules, and an overmold that at least partially encapsulates each of the modules. In such embodiments, at least one surface of the overmold is concave along at least one axis. Further, each of the modules of such an implantable medical device may comprise a housing, and at least one surface of at least one of the housings may be concave along at least one axis.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: May 5, 2009
    Assignee: Medtronic, Inc.
    Inventors: Carl D. Wahlstrand, Darren A. Janzig, Ruchika Singhal, Robert M. Skime, Erik R. Scott, James E. Randall
  • Patent number: 7505816
    Abstract: External energy source, external charger, system of transcutaneous energy transfer, system of transcutaneous charging and method thereof. An implantable medical device has a secondary coil operatively coupled to therapeutic componentry. An external power source has a housing, a primary coil carried in the housing with the primary coil being capable of inductively energizing the secondary coil when the housing is externally placed in proximity of the secondary coil with a first surface of the housing positioned closest to the secondary coil and a thermo-electric cooling device placed associated with the first surface of the housing.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: March 17, 2009
    Assignee: Medtronic, Inc.
    Inventors: Andrew L Schmeling, David P Olson, Mark E Schommer, Erik R Scott, William G. Howard, William C Phillips
  • Publication number: 20090035662
    Abstract: A rechargeable lithium-ion battery includes a positive electrode that includes a first current collector and a first active material. The battery also includes an electrolyte and a negative electrode that includes a second current collector and a second active material, where the second active material includes a lithium titanate material. The positive electrode has a first capacity and the negative electrode has a second capacity, the second capacity being less than the first capacity such that the rechargeable lithium-ion battery is negative-limited.
    Type: Application
    Filed: September 29, 2008
    Publication date: February 5, 2009
    Inventors: Erik R. Scott, Gaurav Jain, Kevin W. Eberman, Craig L. Schmidt
  • Patent number: 7337010
    Abstract: An exemplary embodiment relates to a medical device that includes a rechargeable lithium-ion battery for providing power to the medical device. The lithium-ion battery includes a positive electrode comprising a current collector, a first active material, and a second active material. The lithium-ion battery also includes a negative electrode comprising a current collector and a third active material, the third active material comprising a titanate material. The first active material, second active material, and third active materials are configured to allow doping and undoping of lithium ions. The second active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: February 26, 2008
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Patent number: 7263401
    Abstract: An implantable medical device (IMD) including a nonhermetic battery is described. The IMD includes components and a power source module that includes the nonhermetic battery. The IMD also includes a barrier to substantially impede movement of substances from the nonhermetic battery to the components. The barrier may include a hermetic feedthrough, a gel, a polymer, or a solid electrolyte within the nonhermetic battery, and a seal member. The barrier may also be a material that encapsulates the nonhermetic battery and a getter within the IMD. In some embodiments, the IMD comprises a modular IMD including an interconnect member. In that case, the barrier may include a material that fills at least a portion of a void defined by the interconnect member. A length and a cross-sectional area of the interconnect member may also act as a barrier.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: August 28, 2007
    Assignee: Medtronic, Inc.
    Inventors: Erik R. Scott, Carl D. Wahlstrand, Robert M. Skime, Craig L. Schmidt
  • Publication number: 20040176673
    Abstract: At least one surface of an implantable medical device is concave along at least one axis such that it substantially conforms to a surface within a patient, such as the cranium, when it is implanted on that surface. In some embodiments, the surface of the implantable medical device substantially conforms to an arc with a radius that is between 4.5 and 9.5 centimeters, and is preferably approximately equal to 7 centimeters. In some embodiments, the implantable medical device comprises a plurality of interconnected modules, and an overmold that at least partially encapsulates each of the modules. In such embodiments, at least one surface of the overmold is concave along at least one axis. Further, each of the modules of such an implantable medical device may comprise a housing, and at least one surface of at least one of the housings may be concave along at least one axis.
    Type: Application
    Filed: December 9, 2003
    Publication date: September 9, 2004
    Inventors: Carl D. Wahlstrand, Darren A. Janzig, Ruchika Singhal, Robert M. Skime, Erik R. Scott, James E. Randall
  • Patent number: 6505069
    Abstract: The present invention relates generally to improved cathodes (24) for use in an electrotransport device (10) for transdermally or transmucosally delivering a beneficial agent (e.g., a drug) to, or extracting a body analyte (e.g., glucose) from, the body surface of a patient. Most particularly, the present invention relates to a cathodic electrode (24) in the form of a silver halide foil which can be made, e.g., by forging particulate silver chloride. The cathode (24) does not absorb agent (e.g., drug), eliminates the need for binders, solvents and processing aids during the manufacturing process, and increases dimensional freedom of design.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: January 7, 2003
    Assignee: ALZA Corporation
    Inventors: Erik R. Scott, Lothar W. Kleiner
  • Publication number: 20020055704
    Abstract: The present invention relates generally to improved cathodes (24) for use in an electrotransport device (10) for transdermally or transmucosally delivering a beneficial agent (e.g., a drug) to, or extracting a body analyte (e.g., glucose) from, the body surface of a patient. Most particularly, the present invention relates to a cathodic electrode (24) in the form of a silver halide foil which can be made, e.g., by forging particulate silver chloride. The cathode (24) does not absorb agent (e.g., drug), eliminates the need for binders, solvents and processing aids during the manufacturing process, and increases dimensional freedom of design.
    Type: Application
    Filed: January 28, 1999
    Publication date: May 9, 2002
    Inventors: ERIK R. SCOTT, LOTHAR W. KLEINER
  • Patent number: 6195582
    Abstract: The present invention relates generally to an electrotransport device for transdermally or transmucosally delivering a beneficial agent (e.g., a drug) to the body surface of a patient or for transdermally or transmucosally sampling a body analyte. Most particularly, the present invention relates to a configured and electrochemically reactive electrode assembly having improved start-up electrical performance and improved lag time to compliant agent delivery.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: February 27, 2001
    Assignee: ALZA Corporation
    Inventor: Erik R. Scott