Patents by Inventor Ernest Jefferson

Ernest Jefferson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128993
    Abstract: A method includes receiving, with an antenna-receiver connected to a platform in a group of platforms, a set of uniquely identifiable signals transmitted from respective antennas separate from the platform; defining a first coordinate frame using the location of the antennas; determining, with a platform processor in communication with the at least one antenna-receiver, a position of the platform in the first coordinate frame, the platform processor identifying the position of the platform using one or more characteristics of the uniquely identifiable signals; generating, with the platform processor, a transformation from a coordinate frame defined by the group of platforms to the first coordinate frame; and receiving information at each of the platforms regarding a non-cooperative target. The transformation from a coordinate frame defined by the platforms to the first coordinate frame enables engagement systems and tracking sensors to extend their effective operating range.
    Type: Application
    Filed: October 17, 2022
    Publication date: April 18, 2024
    Inventor: Ernest Jefferson Holder
  • Patent number: 11353290
    Abstract: A spatially-distributed architecture (SDA) of antennas transmits respective uniquely coded signals. A first receiver having a known position in a coordinate system defined by the SDA receives reflected versions of the uniquely coded signals. A first processor receives the reflected versions of the uniquely coded signals and identifies a position of a non-cooperative object in the coordinate system. A platform with a platform receiver receives non-reflected versions of the uniquely coded signals. The platform determines a position of the platform in the coordinate system. In an example, the platform uses a self-determined position and a position of the non-cooperative object communicated from the SDA to navigate or guide the platform relative to the non-cooperative object. In another example, the platform uses a self-determined position and information from an alternative signal source in a second coordinate system to guide the platform. Guidance solutions may be generated in either coordinate system.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: June 7, 2022
    Assignee: PROPAGATION RESEARCH ASSOCIATES, INC.
    Inventor: Ernest Jefferson Holder
  • Patent number: 11018705
    Abstract: A system includes a set of spatially separated transmit antenna elements (SSTAE) broadcasting uniquely identifiable waveforms, a set of spatially separated receive antenna elements (SSRAE) and at least one circuit assembly. The at least one circuit assembly is electrically coupled to the SSRAE, which provide respective electrical signals responsive to the uniquely identifiable waveforms. The electrical signals include at least one target signal and electromagnetic interference. The circuit assembly operates on the electrical signals to create a matched projection space parallel to a reference related to the at least one target signal and a second projection space that is orthogonal or nearly orthogonal to the matched projection space. The second projection space includes the electromagnetic interference but not the at least one target signal. The circuit assembly uses the second projection space and the matched projection space to separate the electromagnetic interference from the at least one target signal.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: May 25, 2021
    Assignee: Propagation Research Associates, Inc.
    Inventor: Ernest Jefferson Holder
  • Publication number: 20200191529
    Abstract: A spatially-distributed architecture (SDA) of antennas transmits respective uniquely coded signals. A first receiver having a known position in a coordinate system defined by the SDA receives reflected versions of the uniquely coded signals. A first processor receives the reflected versions of the uniquely coded signals and identifies a position of a non-cooperative object in the coordinate system. A platform with a platform receiver receives non-reflected versions of the uniquely coded signals. The platform determines a position of the platform in the coordinate system. In an example, the platform uses a self-determined position and a position of the non-cooperative object communicated from the SDA to navigate or guide the platform relative to the non-cooperative object. In another example, the platform uses a self-determined position and information from an alternative signal source in a second coordinate system to guide the platform. Guidance solutions may be generated in either coordinate system.
    Type: Application
    Filed: February 24, 2020
    Publication date: June 18, 2020
    Inventor: Ernest Jefferson Holder
  • Patent number: 10571224
    Abstract: A spatially-distributed architecture (SDA) of antennas transmits respective uniquely coded signals. A first receiver having a known position in a coordinate system defined by the SDA receives reflected versions of the uniquely coded signals. A first processor receives the reflected versions of the uniquely coded signals and identifies a position of a non-cooperative object in the coordinate system. A platform with a platform receiver receives non-reflected versions of the uniquely coded signals. The platform determines a position of the platform in the coordinate system. In an example, the platform uses a self-determined position and a position of the non-cooperative object communicated from the SDA to navigate or guide the platform relative to the non-cooperative object. In another example, the platform uses a self-determined position and information from an alternative signal source in a second coordinate system to guide the platform. Guidance solutions may be generated in either coordinate system.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: February 25, 2020
    Assignee: Propagation Research Associates, Inc.
    Inventor: Ernest Jefferson Holder
  • Publication number: 20170370678
    Abstract: A spatially-distributed architecture (SDA) of antennas transmits respective uniquely coded signals. A first receiver having a known position in a coordinate system defined by the SDA receives reflected versions of the uniquely coded signals. A first processor receives the reflected versions of the uniquely coded signals and identifies a position of a non-cooperative object in the coordinate system. A platform having a second receiver receives non-reflected versions of the uniquely coded signals. The platform determines a position of the platform in the coordinate system. In an example, the platform uses a self-determined position and a position of the non-cooperative object communicated from the SDA to navigate or guide the platform relative to the non-cooperative object. In another example, the platform uses a self-determined position and information from an alternative signal source in a second coordinate system to guide the platform. Guidance solutions may be generated in either coordinate system.
    Type: Application
    Filed: July 3, 2017
    Publication date: December 28, 2017
    Inventor: Ernest Jefferson Holder
  • Publication number: 20170314892
    Abstract: A spatially-distributed architecture (SDA) of antennas transmits respective uniquely coded signals. A first receiver having a known position in a coordinate system defined by the SDA receives reflected versions of the uniquely coded signals. A first processor receives the reflected versions of the uniquely coded signals and identifies a position of a non-cooperative object in the coordinate system. A platform with a platform receiver receives non-reflected versions of the uniquely coded signals. The platform determines a position of the platform in the coordinate system. In an example, the platform uses a self-determined position and a position of the non-cooperative object communicated from the SDA to navigate or guide the platform relative to the non-cooperative object. In another example, the platform uses a self-determined position and information from an alternative signal source in a second coordinate system to guide the platform. Guidance solutions may be generated in either coordinate system.
    Type: Application
    Filed: July 19, 2017
    Publication date: November 2, 2017
    Inventor: Ernest Jefferson Holder
  • Patent number: 9696418
    Abstract: A spatially-distributed architecture (SDA) of antennas transmits a set of uniquely coded signals. A first receiver having a known position in a coordinate system defined by the SDA receives reflected versions of the uniquely coded signals. A first processor receives the reflected versions of the uniquely coded signals and identifies a position of a non-cooperative object in the coordinate system. A platform having a second receiver receives non-reflected versions of the uniquely coded signals. The platform determines a position of the platform in the coordinate system. In an example, the platform uses a self-determined position and a position of the non-cooperative object communicated from the SDA to navigate or guide the platform relative to the non-cooperative object. In another example, the platform uses a self-determined position and information from an alternative signal source in a second coordinate system to guide the platform after a coordinate conversion.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: July 4, 2017
    Assignee: Propagation Research Associates, Inc.
    Inventor: Ernest Jefferson Holder
  • Patent number: 9682787
    Abstract: A protective cover mountable on a pitot prob disposed on the fuselage of an idle aircraft adapted to be tailored to similar covers mountable on other probes of such aircraft, including a tubular body of a braided fabric material provided with a recess therein for receiving the leading end of a pitot tube therein, a first annular member disposed in such recess adjacent an open end thereof having a portion of the tubular body projecting therethrough, including such member therein and a second annular member disposed substantially coaxially with such first annular member and secured to such tubular body of braided fabric material, having at least one tab provided on the exterior thereof provided with means to tether such cover to similar covers.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: June 20, 2017
    Assignee: SERIAS DESIGN LLC
    Inventors: James Van Dis, Ernest Jefferson
  • Patent number: 9529078
    Abstract: An adaptive parameter for adjusting a threshold in a sensor system that provides a constant false alarm rate is disclosed. A projection space generator performs projection operations to create a matched projection space and first and second mismatched projection spaces such that each mismatched projection space is orthogonal or nearly orthogonal to the matched projection space. A mitigation engine receives the matched and first mismatched projection spaces and generates a set of weights from one of the first mismatched projection space or both of the matched and first mismatched projection spaces. A second mismatched projection space that is mismatched to both the matched and first mismatched projection spaces is provided to a clutter characterization engine that generates samples from the second mismatched projection space and the set of weights. The adaptive parameter is generated from the samples and is used as an input to a threshold adjuster in a target detector.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: December 27, 2016
    Assignee: Propagation Research Associates, Inc.
    Inventor: Ernest Jefferson Holder
  • Publication number: 20160327370
    Abstract: A spatially-distributed architecture (SDA) of antennas transmits a set of uniquely coded signals. A first receiver having a known position in a coordinate system defined by the SDA receives reflected versions of the uniquely coded signals. A first processor receives the reflected versions of the uniquely coded signals and identifies a position of a non-cooperative object in the coordinate system. A platform having a second receiver receives non-reflected versions of the uniquely coded signals. The platform determines a position of the platform in the coordinate system. In an example, the platform uses a self-determined position and a position of the non-cooperative object communicated from the SDA to navigate or guide the platform relative to the non-cooperative object. In another example, the platform uses a self-determined position and information from an alternative signal source in a second coordinate system to guide the platform after a coordinate conversion.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 10, 2016
    Inventor: Ernest Jefferson Holder
  • Patent number: 9401741
    Abstract: A received signal that includes a target signal and an interference signal is sampled in space and time and then filtered into a matched-filtered signal and into a mis-matched-filtered signal, which is orthogonal to, or nearly orthogonal to, the matched-filtered signal The interference signal is present in both the matched-filtered signal and the mis-matched-filtered signal, whereas the target signal is present in only the matched-filtered signal. In the mis-matched-filtered signal, the interference signal is different from the matched-filtered signal in the temporal property, but is the same as the matched-filtered signal in the spatial property. After the matched-filtered signal and the mis-match-filtered signals have been obtained for the signals received by each antenna element of an array of antenna elements, they are processed to obtain a result vector, W, that is a representation of the target signal without the interference.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: July 26, 2016
    Assignee: Propagation Research Associates, Inc.
    Inventors: Ernest Jefferson Holder, George Martin Hall
  • Publication number: 20160033623
    Abstract: An adaptive parameter for adjusting a threshold in a sensor system that provides a constant false alarm rate is disclosed. A projection space generator performs projection operations to create a matched projection space and first and second mismatched projection spaces such that each mismatched projection space is orthogonal or nearly orthogonal to the matched projection space. A mitigation engine receives the matched and first mismatched projection spaces and generates a set of weights from one of the first mismatched projection space or both of the matched and first mismatched projection spaces. A second mismatched projection space that is mismatched to both the matched and first mismatched projection spaces is provided to a clutter characterization engine that generates samples from the second mismatched projection space and the set of weights. The adaptive parameter is generated from the samples and is used as an input to a threshold adjuster in a target detector.
    Type: Application
    Filed: July 28, 2015
    Publication date: February 4, 2016
    Inventor: Ernest Jefferson Holder
  • Patent number: 9215012
    Abstract: Systems and methods are provided for mitigating natural and man-made interference through the use of one or more orthogonal, or nearly-orthogonal, projections of the received signal, which is assumed to be contaminated with interference, into one or more orthogonal projection spaces based on properties of the signal of interest. Once separated into orthogonal projection space(s), the system and method use information contained in the orthogonal projection space(s) to separate the signal of interest, or target signal, from the interference and to mitigate the interference.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: December 15, 2015
    Assignee: Propagation Research Associates, Inc.
    Inventors: Ernest Jefferson Holder, George Martin Hall
  • Patent number: 9103910
    Abstract: An adaptive parameter for adjusting a threshold in a sensor system that provides a constant false alarm rate is disclosed. A projection space generator performs projection operations to create a matched projection space and first and second mismatched projection spaces such that each mismatched projection space is orthogonal or nearly orthogonal to the matched projection space. A mitigator engine receives the matched and first mismatched projection spaces and generates a covariance matrix from the first mismatched projection space and an image space from the covariance matrix and the matched projection space. A second mismatched projection space that is mismatched to both the matched and first mismatched projection spaces is provided to a clutter characterization engine that generates samples from the second mismatched projection space and the covariance matrix. The adaptive parameter is generated from the samples and is used as an input to a threshold adjuster in a target detector.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: August 11, 2015
    Assignee: Propagation Research Associates, Inc.
    Inventor: Ernest Jefferson Holder
  • Publication number: 20150109165
    Abstract: An adaptive parameter for adjusting a threshold in a sensor system that provides a constant false alarm rate is disclosed. A projection space generator performs projection operations to create a matched projection space and first and second mismatched projection spaces such that each mismatched projection space is orthogonal or nearly orthogonal to the matched projection space. A mitigator engine receives the matched and first mismatched projection spaces and generates a covariance matrix from the first mismatched projection space and an image space from the covariance matrix and the matched projection space. A second mismatched projection space that is mismatched to both the matched and first mismatched projection spaces is provided to a clutter characterization engine that generates samples from the second mismatched projection space and the covariance matrix. The adaptive parameter is generated from the samples and is used as an input to a threshold adjuster in a target detector.
    Type: Application
    Filed: December 30, 2014
    Publication date: April 23, 2015
    Inventor: Ernest Jefferson Holder
  • Publication number: 20150059939
    Abstract: A protective cover mountable on a pitot prob disposed on the fuselage of an idle aircraft adapted to be tailored to similar covers mountable on other probes of such aircraft, including a tubular body of a braided fabric material provided with a recess therein for receiving the leading end of a pitot tube therein, a first annular member disposed in such recess adjacent an open end thereof having a portion of the tubular body projecting therethrough, including such member therein and a second annular member disposed substantially coaxially with such first annular member and secured to such tubular body of braided fabric material, having at least one tab provided on the exterior thereof provided with means to tether such cover to similar covers.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: Serias Design LLC
    Inventors: James Van Dis, Ernest Jefferson
  • Patent number: 8854252
    Abstract: A system for providing a multi-mode, multi-static interferometer may include a transmitter array, a receiver array and a processor. The transmitter array includes at least a first transmitter and a second transmitter spatially separated from each other by a first known distance. The receiver array includes at least a first receiver and a second receiver spatially separated from each other by a second known distance. The receiver array is positioned to enable receipt of a return signal from transmissions provided by the transmitter array and reflecting off an object. The processor is configured to enable the transmitter array to generate uniquely coded signals and configured to distinguish, based on the uniquely coded signals, a first signal transmitted by the first transmitter from a second signal transmitted by the second transmitter in response to reception of a combined signal including reflected signals corresponding to at least the first and second signals by the receiver array.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: October 7, 2014
    Assignee: Propagation Research Associates, Inc.
    Inventor: Ernest Jefferson Holder
  • Publication number: 20140253368
    Abstract: A system for providing a multi-mode, multi-static interferometer may include a transmitter array, a receiver array and a processor. The transmitter array includes at least a first transmitter and a second transmitter spatially separated from each other by a first known distance. The receiver array includes at least a first receiver and a second receiver spatially separated from each other by a second known distance. The receiver array is positioned to enable receipt of a return signal from transmissions provided by the transmitter array and reflecting off an object. The processor is configured to enable the transmitter array to generate uniquely coded signals and configured to distinguish, based on the uniquely coded signals, a first signal transmitted by the first transmitter from a second signal transmitted by the second transmitter in response to reception of a combined signal including reflected signals corresponding to at least the first and second signals by the receiver array.
    Type: Application
    Filed: July 16, 2009
    Publication date: September 11, 2014
    Inventor: Ernest Jefferson Holder
  • Publication number: 20140128002
    Abstract: Systems and methods are provided for mitigating natural and man-made interference through the use of one or more orthogonal, or nearly-orthogonal, projections of the received signal, which is assumed to be contaminated with interference, into one or more orthogonal projection spaces based on properties of the signal of interest. Once separated into orthogonal projection space(s), the system and method use information contained in the orthogonal projection space(s) to separate the signal of interest, or target signal, from the interference and to mitigate the interference.
    Type: Application
    Filed: April 26, 2013
    Publication date: May 8, 2014
    Applicant: Propagation Research Associates, Inc.
    Inventors: Ernest Jefferson Holder, George Martin Hall