Patents by Inventor Ernest Long

Ernest Long has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120077956
    Abstract: A process of making a polymeric phenazonium compound having the general formula: wherein R1, R2, R4, R5, R6, R8 and R9 are the same or different, and represent hydrogen, a low alkyl or a substituted aryl, R3 starts with NH2 and is diazotized followed by polymerization, R5 and R8 may alternatively represent monomeric or polymeric phenazonium radicals, R7 with its substituent group is a substituted amine, with RX and RY representing any combination of CH3, C2H5, and hydrogen, except that RX and RY cannot both be hydrogen, A is an acid radical, and n is an integer from 2 to 100, preferably from 2 to 20 is described. The polymeric phenazonium compound is usable in as an additive in a metal plating bath.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Inventors: Andrew M. Krol, Ernest Long, Lev Taytsas
  • Publication number: 20120061705
    Abstract: A method for treating a metal surface to reduce corrosion thereon and/or to increase the reflectance of the treated surface, the method comprising a) plating a metal surface with an electroless nickel plating solution; and thereafter b) immersion plating silver on the electroless nickel plated surface, whereby corrosion of the metal surface is substantially prevented and/or the reflectance of the silver plated surface is substantially improved. The treating method is useful for increasing the solderability of the metal surface, for example, in electronic packaging applications.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Inventors: Lenora M. Toscano, Ernest Long, Witold Paw, Donna M. Kologe, Katsutsugu Koyasu, Keisuke Nishu
  • Publication number: 20120061710
    Abstract: A method for treating a metal surface to reduce corrosion thereon and/or to increase the reflectance of the treated surface, the method comprising a) plating a metal surface with an electroless nickel plating solution; and thereafter b) immersion plating silver on the electroless nickel plated surface, whereby corrosion of the metal surface is substantially prevented and/or the reflectance of the silver plated surface is substantially improved. The treating method is useful for increasing the solderability of the metal surface, for example, in electronic packaging applications.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Inventors: Lenora M. Toscano, Ernest Long, Witold Paw, Donna M. Kologe, Katsutsugu Koyasu, Keisuke Nishu
  • Publication number: 20120061698
    Abstract: A method for treating a metal surface to reduce corrosion thereon and/or to increase the reflectance of the treated surface, the method comprising a) plating a metal surface with an electroless nickel plating solution; and thereafter b) immersion plating silver on the electroless nickel plated surface, whereby corrosion of the metal surface is substantially prevented and/or the reflectance of the silver plated surface is substantially improved. The treating method is useful for increasing the solderability of the metal surface, for example, in electronic packaging applications and in manufacturing light emitting diodes (LEDs).
    Type: Application
    Filed: November 22, 2011
    Publication date: March 15, 2012
    Inventors: Lenora M. Toscano, Ernest Long, Witold Paw, Donna M. Kologe, Katsutsugu Koyasu, Keisuke Nishu
  • Patent number: 7989346
    Abstract: A method of forming a resist pattern on a silicon semiconductor substrate having an anti-reflective layer thereon is described. The method includes the steps of a) modifying surface energy of the anti-reflective surface with a chemical treatment composition, b) applying a UV etch resist to the treated anti-reflective surface, and c) exposing the anti-reflective surface to a wet chemical etchant composition to remove exposed areas of the anti-reflective surface. Thereafter, the substrate can be metallized to provide a conductor pattern. The method may be used to produce silicon solar cells.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: August 2, 2011
    Inventors: Adam Letize, Andrew M. Krol, Ernest Long, Steven A. Castaldi
  • Publication number: 20110183082
    Abstract: A method of treating a laser-activated thermoplastic substrate having a metal compound dispersed therein is described. The substrate is contacted with an aqueous composition comprising: (i) a thiol functional organic compound; (ii) an ethoxylated alcohol surfactant; and (iii) xanthan gum. By use of the treatment composition, when the substrate is subsequently laser-activated and plated by electroless plating, extraneous plating of the substrate is substantially eliminated.
    Type: Application
    Filed: January 26, 2010
    Publication date: July 28, 2011
    Inventors: Robert Hamilton, Ernest Long, Andrew M. Krol
  • Publication number: 20110021023
    Abstract: A method of forming a resist pattern on a silicon semiconductor substrate having an anti-reflective layer thereon is described. The method includes the steps of a) modifying surface energy of the anti-reflective surface with a chemical treatment composition, b) applying a UV etch resist to the treated anti-reflective surface, and c) exposing the anti-reflective surface to a wet chemical etchant composition to remove exposed areas of the anti-reflective surface. Thereafter, the substrate can be metallized to provide a conductor pattern. The method may be used to produce silicon solar cells.
    Type: Application
    Filed: July 27, 2009
    Publication date: January 27, 2011
    Inventors: Adam Letize, Andrew M. Krol, Ernest Long, Steven A. Castaldi
  • Patent number: 7631798
    Abstract: A method for enhancing the solderability of a metallic surface is disclosed where the metallic surface is plated with a silver plate prior to soldering, which immersion silver plate is treated with an additive comprising a mercapto substituted or thio substituted silane compound. Preferred post treatments comprise 3-mercapto propyl trimethoxysilane and/or 3-oxtanoylthio-1-propyltriethoxy silane.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: December 15, 2009
    Inventors: Ernest Long, Lenora M. Toscano, Paul Romaine, Colleen McKirryher, Donna M. Kologe, Steven A. Castaldi, Carl P. Steinecker
  • Publication number: 20090223827
    Abstract: Pulse reverse electrolysis of acid copper solutions is used for applying copper to printing cylinders, especially gravure printing cylinders. The plating composition generally comprising copper ions, counter ions, chloride ions, a polyalkylene glycol, and a bath-soluble divalent sulfur compound. The benefits include an improved thickness distribution of the copper electrodeposited on the plated article, reduced metal waste, reduced plating times and increased production capacity.
    Type: Application
    Filed: May 21, 2009
    Publication date: September 10, 2009
    Inventors: Roderick D. Herdman, Trevor Pearson, Ernest Long, Alan Gardner
  • Publication number: 20090123656
    Abstract: A composition for inhibiting the galvanic corrosion of printed circuit boards. The corrosion resistant coating composition may be applied to the printed circuit board to reduce corrosion and to shut down the chemical mechanism for galvanic corrosion so that corrosion protection of the product is achieved. The corrosion resistant coating composition comprises a) a mercaptan; b) an ethoxylated alcohol; and c) at least one metal species selected from the group consisting of molybdates, tungstates, vanadataes, zirconium, cobalt.
    Type: Application
    Filed: November 13, 2007
    Publication date: May 14, 2009
    Inventors: Ernest Long, Andrew Krol, Lenora M. Toscano, Steven A. Castaldi
  • Patent number: 7329334
    Abstract: Pulse reverse electrolysis of acid copper solutions is used for applying copper deposits of a controlled hardness for applications such as producing printing cylinders. The benefits include improved production capacity. Hardness of the deposit is controlled by varying at least one factor selected from the group consisting of (i) cathodic pulse time, (ii) anodic pulse time, (iii) cathodic pulse current density, and (iv) anodic pulse current density. Preferably the ratio of cathodic pulse time to anodic pulse time is varied.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: February 12, 2008
    Inventors: Roderick D. Herdman, Trevor Pearson, Ernest Long, Alan Gardner
  • Patent number: 7204058
    Abstract: A flat-formed arch ring unit includes a linear array of voussoir portions connected along their upper edges. The unit is then archable. A method is provided for forming an archway including the steps of arching one or more the flat formed arch ring units and locating them between two or more foundation blocks or the like. This provides a simple yet effective process and unit for forming an archway. With ease of production, shaping and transportation, making new archways or carrying out repairs of existing bridge archways is significantly faster and cheaper, minimizing disruption and delay to traffic.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: April 17, 2007
    Assignee: The Queen's University of Belfast
    Inventor: Adrian Ernest Long
  • Publication number: 20060096868
    Abstract: A nickel electroplating bath is disclosed which is suitable for plating, a base layer of nickel over zinc or zinc alloy parts. Subsequent plating onto this base layer can be achieved with copper, chromium or bright nickel with good adhesion and appearance. The nickel electroplating solution proposed comprises an additive package comprising (i) sulphonic acid or sulphonic acid salts, (ii) sulfonated alkoxylate and (iii) organic acid selected from the group consisting of tolylacetic acid, salicylic acid, hydroxy-benzoic acid, benzyloxyacetone and mixtures of the foregoing.
    Type: Application
    Filed: November 10, 2004
    Publication date: May 11, 2006
    Inventors: Siona Bunce, Ernest Long, Anthony Rowan
  • Publication number: 20060054505
    Abstract: Pulse reverse electrolysis of acid copper solutions is used for applying copper deposits of a controlled hardness for applications such as producing printing cylinders. The benefits include improved production capacity. Hardness of the deposit is controlled by varying at least one factor selected from the group consisting of (i) cathodic pulse time, (ii) anodic pulse time, (iii) cathodic pulse current density, and (iv) anodic pulse current density. Preferably the ratio of cathodic pulse time to anodic pulse time is varied.
    Type: Application
    Filed: September 16, 2004
    Publication date: March 16, 2006
    Inventors: Roderick Herdman, Trevor Pearson, Ernest Long, Alan Gardner
  • Publication number: 20050284766
    Abstract: Pulse reverse electrolysis of acid copper solutions is used for applying copper to printing cylinders, especially gravure printing cylinders. The plating composition generally comprising copper ions, counter ions, chloride ions, a polyalkylene glycol, and a bath-soluble divalent sulfur compound. The benefits include an improved thickness distribution of the copper electrodeposited on the plated article, reduced metal waste, reduced plating times and increased production capacity.
    Type: Application
    Filed: June 25, 2004
    Publication date: December 29, 2005
    Inventors: Roderick Herdman, Trevor Pearson, Ernest Long, Alan Gardner
  • Publication number: 20040074775
    Abstract: Pulse reverse electrolysis of acid copper solutions is used for applying copper to decorative articles, such as aluminium alloy automotive wheels and plastic parts for automotive use. The benefits include an improved thickness distribution of the copper electrodeposited on the plated article, reduced metal waste, reduced plating times and increased production capacity.
    Type: Application
    Filed: October 21, 2002
    Publication date: April 22, 2004
    Inventors: Roderick Dennis Herdman, Michael Ray Crary, Ernest Long
  • Patent number: 6587955
    Abstract: Methods and apparatus for implementing priority inversion avoidance protocols and deterministic locking where an API is used to select objects in a multi-threaded computer system are disclosed. In one aspect of the invention, an enhanced monitor is associated with one or more selected objects by way of an associated API. The enhanced monitor is arranged to set behavior for a lock associated with the selected objects as determined by a user defined behavior object included within the enhanced monitor. In this arrangement, only the selected one or more objects are associated with the enhanced monitor.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: July 1, 2003
    Assignee: Sun Microsystems, Inc.
    Inventors: William Foote, Dean Roy Ernest Long, Nedim Fresko
  • Patent number: 6524403
    Abstract: A non-chrome containing composition and process are disclosed for enhancing the corrosion resistance of zinc or zinc alloy surfaces. The composition comprises a source of titanium ions or titanates, an oxidant and fluorides or complex fluorides. The composition also preferably comprises an organic acid and/or a Group II metal compound, preferably a Group II metal chloride.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: February 25, 2003
    Inventors: Ian Bartlett, Ernest Long, Anthony Rowan
  • Publication number: 20020182337
    Abstract: A process for mechanical plating zinc alloys onto metal substrates is disclosed. The process is particularly suited to plating zinc-aluminium or zinc-manganese alloys onto aluminium or magnesium substrates. The zinc alloy particles are immersion coated with tin prior to plating upon the metal substrate. Fluoride ions are preferably added to the plating media to increase plating efficiency, particularly when zinc aluminium alloys are being plated.
    Type: Application
    Filed: May 30, 2001
    Publication date: December 5, 2002
    Inventors: Ian Bartlett, Ernest Long, Anthony Rowan, Anthony Wall