Patents by Inventor Ethan Schonbrun

Ethan Schonbrun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8368008
    Abstract: Methods and apparatus (1100) for trapping fluid-borne object(s) (212) using one or more Fresnel zone plates (202) located in proximity to a fluid medium (208). Optical tweezers based on one or more Fresnel zone plates may be integrated with a microfluidic structure (e.g., chambers, channels) (1104) of various geometries so as to form one or more optical traps (215) within a fluid medium contained by the microfluidic structure(s). Three-dimensional trapping of objects can be obtained with stiffness comparable to that of conventional optical tweezers based on a microscope objective. In one example, a single Fresnel zone plate is particularly configured to form multiple optical traps upon irradiation, so as to trap multiple objects simultaneously. Exemplary applications of the methods and apparatus disclosed herein include determination of various fluid medium properties (e.g., velocity, refractive index, viscosity, temperature, pH) and object sorting.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: February 5, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Ethan Schonbrun, Charles Rinzler, Kenneth B. Crozier
  • Publication number: 20120267549
    Abstract: Methods and apparatus for high-throughput fluorescence detection using integrated microfabricated optical element arrays are described. In one example, the optical element arrays may comprise one or more microfabricated Fresnel zone plates, which may be configured to collect light from samples flowing in microfluidic channels. Multiple samples may be inspected in parallel at significantly high rates (e.g., about 200,000 samples per second or higher). A relay lens combined with high numerical aperture integrated microfabricated optical elements provides significant signal enhancement (e.g., on the order of at least 200 times that of conventional fluorescence detection methods).
    Type: Application
    Filed: May 7, 2010
    Publication date: October 25, 2012
    Applicant: President and Fellows of Havard College
    Inventors: Kenneth B. Crozier, David A. Weitz, Ethan Schonbrun, Adam R. Abate
  • Publication number: 20120127568
    Abstract: Microscopy methods and apparatus in which one or more microfabricated optical elements (e.g., one or more Fresnel zone plates) operate as one or an array of objective lenses. A single object or a plurality of objects may be scanned in parallel. A single, low-numerical-aperture relay optic can be used with the one or more optical elements eliminating the need for one or more confocal pinhole apertures. When an array of optical elements is used, hundreds to thousands of objects can be imaged or inspected simultaneously onto a two-dimensional imaging device, such as a CCD array. The microfabricated optical elements can be readily configured for imaging with a solid immersion medium. Imaging resolutions on the order of one wavelength of the illumination source, and less, can be achieved.
    Type: Application
    Filed: May 7, 2010
    Publication date: May 24, 2012
    Applicant: President and Fellows of Harvard College
    Inventors: Ethan Schonbrun, Kenneth B. Crozier
  • Publication number: 20110309237
    Abstract: A nanowire array is described herein. The nanowire array comprises a substrate and a plurality of nanowires extending essentially vertically from the substrate; wherein: each of the nanowires has uniform chemical along its entire length; a refractive index of the nanowires is at least two times of a refractive index of a cladding of the nanowires. This nanowire array is useful as a photodetector, a submicron color filter, a static color display or a dynamic color display.
    Type: Application
    Filed: October 22, 2010
    Publication date: December 22, 2011
    Applicants: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, ZENA TECHNOLOGIES, INC.
    Inventors: Kwanyong SEO, Munib Wober, Paul Steinvurzel, Ethan Schonbrun, Yaping Dan, Kenneth B. Crozier
  • Publication number: 20110309233
    Abstract: Methods, apparatuses, systems, and devices relating to fabricating one or more nanowires are disclosed. One method for fabricating a nanowire includes: selecting a particular wavelength of electromagnetic radiation for absorption for a nanowire; determining a diameter corresponding to the particular wavelength; and fabricating a nanowire having the determined diameter. According to another embodiment, one or more nanowires may be fabricated in an array, each having the same or different determined diameters. An image sensor and method of imaging using such an array are also disclosed.
    Type: Application
    Filed: December 13, 2010
    Publication date: December 22, 2011
    Applicants: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, ZENA TECHNOLOGIES, INC.
    Inventors: Kwanyong SEO, Paul Steinvurzel, Ethan Schonbrun, Munib Wober, Kenneth B. Crozier
  • Publication number: 20100288913
    Abstract: Methods and apparatus (1100) for trapping fluid-borne object(s) (212) using one or more Fresnel zone plates (202) located in proximity to a fluid medium (208). Optical tweezers based on one or more Fresnel zone plates may be integrated with a microfluidic structure (e.g., chambers, channels) (1104) of various geometries so as to form one or more optical traps (215) within a fluid medium contained by the microfluidic structure(s). Three-dimensional trapping of objects can be obtained with stiffness comparable to that of conventional optical tweezers based on a microscope objective. In one example, a single Fresnel zone plate is particularly configured to form multiple optical traps upon irradiation, so as to trap multiple objects simultaneously. Exemplary applications of the methods and apparatus disclosed herein include determination of various fluid medium properties (e.g., velocity, refractive index, viscosity, temperature, pH) and object sorting.
    Type: Application
    Filed: September 23, 2008
    Publication date: November 18, 2010
    Applicant: President and Fellows of Harvard College
    Inventors: Ethan Schonbrun, Charles Rinzler, Kenneth B. Crozier
  • Publication number: 20050117866
    Abstract: A device is described based on flexible photonic crystal, which is comprised of a periodic array of high index dielectric material embedded in a flexible polymer. Dynamic, real time tunability is achieved by the application of a variable force with a MEMS actuator or other means. The force induces changes in the crystal structure of the photonic crystal, and consequently modifies the photonic band structure. The concept was demonstrated by a theoretical investigation on the effect of mechanical stress on the anomalous refraction behavior of the flexible PC, and a very wide tunability in beam propagation direction was observed. Experimental studies on fabrication and characterizations of the flexible photonic crystal structures were also carried out. High quality flexible PC structures were fabricated by e-beam lithography and anisotropic etching processes.
    Type: Application
    Filed: October 20, 2004
    Publication date: June 2, 2005
    Inventors: Wounjhang Park, Jeong-Bong Lee, Mark Tinker, Ethan Schonbrun