Patents by Inventor Etienne Menard

Etienne Menard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8729524
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: May 20, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Matthew Meitl, Yugang Sun, Heung Cho Ko, Andrew Carlson, Won Mook Choi, Mark Stoykovich, Hanqing Jiang, Yonggang Huang, Ralph G. Nuzzo, Zhengtao Zhu, Etienne Menard, Dahl-Young Khang
  • Patent number: 8722458
    Abstract: Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: May 13, 2014
    Assignees: The Board of Trustees of the University of Illinois, Semprius, Inc.
    Inventors: John Rogers, Ralph Nuzzo, Matthew Meitl, Etienne Menard, Alfred J. Baca, Michael Motala, Jong-Hyun Ahn, Sang-Il Park, Chang-Jae Yu, Heung Cho Ko, Mark Stoykovich, Jongseung Yoon
  • Patent number: 8664699
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 4, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Publication number: 20130273695
    Abstract: A method for selectively transferring active components (22) from a source substrate (20) to a destination substrate (10) includes providing a source substrate with one or more active components located on the source substrate, providing a destination substrate, locating a selectively curable adhesive layer (30) between and adjacent to the destination substrate and the source substrate, selecting one or more active components (22A), selectively curing area(s) (32A) of the adhesive layer corresponding to the selected active components to adhere the selected active components to the destination substrate, and removing the source substrate from the destination substrate leaving the selected active components adhered to the destination substrate in the selected areas.
    Type: Application
    Filed: March 22, 2011
    Publication date: October 17, 2013
    Applicant: Semprius, Inc.
    Inventors: Etienne Menard, Joseph Carr
  • Publication number: 20130221355
    Abstract: A substrate includes an anchor area (30) physically secured to a surface of the substrate (10) and at least one printable electronic component (20). The at least one printable electronic component includes an active layer (14) having one or more active elements thereon, and is suspended over the surface of the substrate by electrically conductive breakable tethers (40). The electrically conductive breakable tethers include an insulating layer and a conductive layer thereon that physically secure and electrically connect the at least one printable electronic component to the anchor area, and are configured to be preferentially fractured responsive to pressure applied thereto. Related methods of fabrication and testing are also discussed.
    Type: Application
    Filed: August 24, 2011
    Publication date: August 29, 2013
    Inventors: Christopher Bower, Etienne Menard, Matthew Meitl
  • Patent number: 8506867
    Abstract: Provided are methods and devices for transfer printing of semiconductor elements to a receiving surface. In an aspect, the printing is by conformal contact between an elastomeric stamp inked with the semiconductor elements and a receiving surface, and during stamp removal, a shear offset is applied between the stamp and the receiving surface. The shear-offset printing process achieves high printing transfer yields with good placement accuracy. Process parameter selection during transfer printing, including time varying stamp-backing pressure application and vertical displacement, yields substantially constant delamination rates with attendant transfer printing improvement.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: August 13, 2013
    Assignee: Semprius, Inc.
    Inventor: Etienne Menard
  • Publication number: 20130196474
    Abstract: A method of fabricating transferable semiconductor devices includes providing a release layer including indium aluminum phosphide on a substrate, and providing a support layer on the release layer. The support layer and the substrate include respective materials, such as arsenide-based materials, such that the release layer has an etching selectivity relative to the support layer and the substrate. At least one device layer is provided on the support layer. The release layer is selectively etched without substantially etching the support layer and the substrate. Related structures and methods are also discussed.
    Type: Application
    Filed: August 4, 2011
    Publication date: August 1, 2013
    Inventors: Matthew Meitl, Christopher Bower, Etienne Menard, James Carter, Allen Gray, Salvatore Bonafede
  • Publication number: 20130182333
    Abstract: Coating a machined mold with a flowable, hardenable polymer coating produces an optically-smooth finish and maintains sharpness in upward-pointing features. These procedures produce molds for highly efficient plano-convex silicone-on-glass lens arrays in a fast and inexpensive manner in which an end-mill defines the shape of a lens, and the coating produces its smoothness. End-mill machining and coating lens-shaped features in plates that have movable pins produce molds with eject features disposed inside features that form templates for lens elements without significantly reducing optical performance. Additionally, machining and coating plates that have movable inserts produce molds for lens arrays with reduced volume and one or several rings in each lens element.
    Type: Application
    Filed: July 21, 2011
    Publication date: July 18, 2013
    Inventors: Matthew Meitl, Rudolph Bukovnik, Etienne Menard, Wolfgang Wagner, David Kneeburg, Jimmy Mark
  • Patent number: 8470701
    Abstract: Various heat-sinked components and methods of making heat-sinked components are disclosed where diamond in thermal contact with one or more heat-generating components are capable of dissipating heat, thereby providing thermally-regulated components. Thermally conductive diamond is provided in patterns capable of providing efficient and maximum heat transfer away from components that may be susceptible to damage by elevated temperatures. The devices and methods are used to cool flexible electronics, integrated circuits and other complex electronics that tend to generate significant heat. Also provided are methods of making printable diamond patterns that can be used in a range of devices and device components.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: June 25, 2013
    Assignees: Advanced Diamond Technologies, Inc.
    Inventors: John A. Rogers, Tae Ho Kim, Won Mook Choi, Dae Hyeong Kim, Matthew Meitl, Etienne Menard, John Carlisle
  • Publication number: 20130153277
    Abstract: An active component array includes a target substrate having one or more contacts formed on a side of the target substrate, and one or more printable active components distributed over the target substrate. Each active component includes an active layer having a top side and an opposing bottom side and one or more active element(s) formed on or in the top side of the active layer. The active element(s) are electrically connected to the contact(s), and the bottom side is adhered to the target substrate. Related fabrication methods are also discussed.
    Type: Application
    Filed: March 22, 2011
    Publication date: June 20, 2013
    Inventors: Etienne Menard, Christopher Bower, Matthew Meitl, Philip Garrou
  • Publication number: 20130125956
    Abstract: A concentrator-type photovoltaic device includes at least one light receiving module having a plurality of photovoltaic devices therein, and a pressure regulating device comprising a volume-adjustable chamber that is pneumatically coupled to the at least one light receiving module. The volume-adjustable chamber may be configured to expand and contract in response to temperature fluctuations within the at least one light receiving module. The volume-adjustable chamber can be made from a flexible metalized film with a low water vapor transmission rate. In this way the module can remain sealed from water penetration and yet maintain uniform internal pressure during thermal excursions. The volume-adjustable chamber may be combined with a desiccant such that, as air moves into the expansion chamber, it passes over the desiccant, which removes moisture that has penetrated into the sealed module.
    Type: Application
    Filed: January 6, 2011
    Publication date: May 23, 2013
    Inventors: Bruce Furman, Etienne Menard, Rudy Bukovnik, Scott Burroughs
  • Patent number: 8440546
    Abstract: The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: May 14, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu
  • Publication number: 20130100618
    Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Application
    Filed: April 6, 2012
    Publication date: April 25, 2013
    Applicant: The Board of Trustees of the University of Illinoi
    Inventors: John A. ROGERS, Dahi-Young Khang, Yugang Sun, Etienne Menard
  • Publication number: 20130069275
    Abstract: In a method of printing a transferable component, a stamp including an elastomeric post having three-dimensional relief features protruding from a surface thereof is pressed against a component on a donor substrate with a first pressure that is sufficient to mechanically deform the relief features and a region of the post between the relief features to contact the component over a first contact area. The stamp is retracted from the donor substrate such that the component is adhered to the stamp. The stamp including the component adhered thereto is pressed against a receiving substrate with a second pressure that is less than the first pressure to contact the component over a second contact area that is smaller than the first contact area. The stamp is then retracted from the receiving substrate to delaminate the component from the stamp and print the component onto the receiving substrate. Related apparatus and stamps are also discussed.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 21, 2013
    Inventors: Etienne Menard, John A. Rogers, Seok Kim, Andrew Carlson
  • Patent number: 8394706
    Abstract: The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: March 12, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ralph G. Nuzzo, John A. Rogers, Etienne Menard, Keon Jae Lee, Dahl-Young Khang, Yugang Sun, Matthew Meitl, Zhengtao Zhu, Heung Cho Ko, Shawn Mack
  • Publication number: 20130036909
    Abstract: A concentrator photovoltaic apparatus for controlling internal condensation includes a light receiving module including one or more photovoltaic cells in a waterproof enclosure, at least one primary lens sealed to the waterproof enclosure for concentrating sunlight, a waterproof breather membrane regulating the pressure of the air located inside the enclosure, and a regenerative desiccant in a thermally decoupled dryer tube or thermally coupled to an internal surface of the enclosure. Smaller breather membrane vents and/or positive time delays between the temperature of the desiccant and the temperature of the enclosure may prolong an adsorption phase of the desiccant, which may substantially contribute to efficiency, reliability, and autonomous control of condensation.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 14, 2013
    Inventors: Etienne Menard, Scott Burroughs
  • Publication number: 20120327608
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Application
    Filed: April 6, 2012
    Publication date: December 27, 2012
    Inventors: John A. ROGERS, Matthew Meitl, Yugang Sun, Heung Cho Ko, Andrew Carlson, Won Mook Choi, Mark Stoykovich, Hanging Jiang, Yonggang Huang, Ralph G. Nuzzo, Zhengtao Zhu, Etienne Menard, Dahl-Young Khang
  • Publication number: 20120228669
    Abstract: A large-format substrate with distributed control elements is formed by providing a substrate and a wafer, the wafer having a plurality of separate, independent chiplets formed thereon; imaging the wafer and analyzing the wafer image to determine which of the chiplets are defective; removing the defective chiplet(s) from the wafer leaving remaining chiplets in place on the wafer; printing the remaining chiplet(s) onto the substrate forming empty chiplet location(s); and printing additional chiplet(s) from the same or a different wafer into the empty chiplet location(s).
    Type: Application
    Filed: September 16, 2010
    Publication date: September 13, 2012
    Inventors: Christopher Bower, Etienne Menard, John Hamer, Ronald S. Cok
  • Patent number: 8261660
    Abstract: Provided are an optimized tool apparatus and methods for dry transfer printing of semiconductor elements with high yield and good placement accuracy. The tool apparatus comprises a vacuum coupled fast peel apparatus that provides high pickup yield of the semiconductor elements. In an aspect, this vacuum coupled apparatus provides high pickup rates during pickup of the semiconductor elements from a donor/source wafer. Provided is a tool apparatus for dry transfer printing with a reinforced composite stamp having a thin glass-backing. The tool apparatus also comprises a pressure regulated micro-chamber which provides precise control of a composite stamp lamination and de-lamination. In an aspect, the micro-chamber has an internal cavity volume that is variably controlled, thereby providing precise control of the force on the stamp, and corresponding separation velocity, and improved semiconductor element pick-up and/or placement.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: September 11, 2012
    Assignee: Semprius, Inc.
    Inventor: Etienne Menard
  • Patent number: 8217381
    Abstract: In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: July 10, 2012
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Matthew Meitl, Yugang Sun, Heung Cho Ko, Andrew Carlson, Won Mook Choi, Mark Stoykovich, Hanqing Jiang, Yonggang Huang, Ralph G. Nuzzo, Keon Jae Lee, Zhengtao Zhu, Etienne Menard, Dahl-Young Khang, Seong Jun Kang, Jong Hyun Ahn, Hoon-sik Kim