Patents by Inventor Etsuhisa Yamada
Etsuhisa Yamada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11460049Abstract: An ejector includes a shaft coupled to a passage formation member defining a refrigerant passage inside a body, and the shaft is slidably supported by a support member fixed to the body. A drive mechanism moves the shaft in an axial direction to change a passage sectional area of the refrigerant passage. The passage formation member is provided with a vibration suppressive member including a first mobile end that applies a load to enlarge the refrigerant passage and a second mobile end that applies a load to narrow the refrigerant passage. Both the first mobile end and the second mobile end are disposed on a same side of a slide region of the support member in the axial direction.Type: GrantFiled: December 4, 2018Date of Patent: October 4, 2022Assignee: DENSO CORPORATIONInventors: Yoichiro Kawamoto, Kazunori Mizutori, Etsuhisa Yamada, Teruyuki Hotta, Eitaro Tanaka
-
Publication number: 20220034561Abstract: A refrigeration cycle device includes a refrigerant circuit switching device. The refrigerant circuit switching device is configured to switch among at least a first circuit and a second circuit. The first circuit conducts refrigerant, which is outputted from a heat releasing device, to a liquid storage and conducts the refrigerant, which is outputted from the liquid storage, to a first depressurizing device and conducts the refrigerant, which is depressurized by the first depressurizing device, to an external heat exchanger. The second circuit conducts the refrigerant, which is outputted from the external heat exchanger, to the liquid storage and conducts the refrigerant, which is outputted from the liquid storage, to a second depressurizing device and conducts the refrigerant, which is depressurized by the second depressurizing device, to an evaporating device.Type: ApplicationFiled: October 14, 2021Publication date: February 3, 2022Inventors: Yuuji SUWA, Etsuhisa YAMADA, Masao YASUNO, Daiki KATOU, Masaaki KAWAKUBO, Atsushi INABA, Yuuichi KAMI
-
Patent number: 10899197Abstract: An air conditioner includes an inside condenser, an outside heat exchanger, an inside evaporator, a refrigerant circuit switcher, and an air passage switcher. The refrigerant circuit switcher is configured to switch a layout of the refrigerant circuit to (i) a first circuit during a heating mode such that the refrigerant releases heat at the inside condenser and is decompressed to evaporate at the outside heat exchanger and (ii) a second circuit during a defrosting mode such that the refrigerant releases heat at the outside heat exchanger and is decompressed to evaporate at the inside evaporator. The air passage switcher is configured to switch the air passage to (i) a first passage during the heating mode such that the air passes through the inside evaporator and the inside condenser and (ii) a second passage during the defrosting mode such that the air bypasses the inside condenser.Type: GrantFiled: December 2, 2019Date of Patent: January 26, 2021Assignee: DENSO CORPORATIONInventors: Etsuhisa Yamada, Satoshi Ito, Hiroya Hasegawa
-
Publication number: 20200101819Abstract: An air conditioner includes an inside condenser, an outside heat exchanger, an inside evaporator, a refrigerant circuit switcher, and an air passage switcher. The refrigerant circuit switcher is configured to switch a layout of the refrigerant circuit to (i) a first circuit during a heating mode such that the refrigerant releases heat at the inside condenser and is decompressed to evaporate at the outside heat exchanger and (ii) a second circuit during a defrosting mode such that the refrigerant releases heat at the outside heat exchanger and is decompressed to evaporate at the inside evaporator. The air passage switcher is configured to switch the air passage to (i) a first passage during the heating mode such that the air passes through the inside evaporator and the inside condenser and (ii) a second passage during the defrosting mode such that the air bypasses the inside condenser.Type: ApplicationFiled: December 2, 2019Publication date: April 2, 2020Inventors: Etsuhisa YAMADA, Satoshi ITO, Hiroya HASEGAWA
-
Patent number: 10527329Abstract: In an ejector-type refrigeration cycle device provided with a first compression mechanism and a second compression mechanism, a refrigerant outlet of a suction side evaporator is coupled to a refrigerant suction port of the ejector, and a second compression mechanism is provided between the suction side evaporator and the refrigerant suction port of the ejector. Thus, even in an operation condition in which suction capacity of the ejector is decreased in accordance with a decrease of the flow amount of a drive flow of the ejector, the suction capacity of the ejector can be supplemented by the operation of the second compression mechanism. Accordingly, even when a variation in the flow amount of the drive flow is caused, the ejector-type refrigeration cycle device can be stably operated.Type: GrantFiled: April 16, 2009Date of Patent: January 7, 2020Assignee: DENSO CORPORATIONInventors: Hiroshi Oshitani, Kenichi Fujiwara, Haruyuki Nishijima, Etsuhisa Yamada, Tooru Ikemoto, Youhei Nagano
-
Patent number: 10465957Abstract: An ejector-type refrigeration cycle includes an upstream side gas-liquid separator that separates a refrigerant that has flowed out of a diffuser portion of an ejector into gas and liquid and allows the separated liquid-phase refrigerant to flow to an evaporator without storing the separated liquid-phase refrigerant, and a downstream side gas-liquid separator that separates the refrigerant flowing out of the upstream side gas-liquid separator into gas and liquid, stores the separated liquid-phase refrigerant, and allows the separated gas-phase refrigerant to flow out toward an inlet side of a compressor. The ejector-type refrigeration cycle includes a refrigerant oil bypass passage for introducing a refrigerator oil within the diffuser portion into the downstream side gas-liquid separator.Type: GrantFiled: August 21, 2014Date of Patent: November 5, 2019Assignee: DENSO CORPORATIONInventors: Yoshiyuki Yokoyama, Etsuhisa Yamada, Haruyuki Nishijima, Yoshiaki Takano
-
Patent number: 10344777Abstract: In an ejector, formed in a body is a swirling space which lets a high-pressure refrigerant flowing from a refrigerant inlet port swirl and introduces the swirling high-pressure refrigerant into a depressurizing space in which the swirled high-pressure refrigerant is depressurized and expanded. A passage formation member that defines a nozzle passage and a diffuser passage is shaped to have a cross-sectional area increasing with distance from the depressurizing space. Further, a temperature sensing unit of a drive device that displaces the passage formation member is housed in the body, and the temperature sensing unit and a diaphragm have annular shapes to surround at least the axial line of the passage formation member.Type: GrantFiled: July 25, 2014Date of Patent: July 9, 2019Assignee: DENSO CORPORATIONInventors: Eitaro Tanaka, Toru Takahashi, Satoshi Inoue, Haruyuki Nishijima, Etsuhisa Yamada, Yoichiro Kawamoto
-
Patent number: 10330123Abstract: In an ejector, a substantially conical passage formation member is disposed in the interior of a body forming a space therein to define a nozzle passage functioning as a nozzle, a mixing passage in which an ejection refrigerant ejected from the nozzle passage and a suction refrigerant drawn from a suction passage are mixed together, and a diffuser passage that converts a kinetic energy of the refrigerant that has flowed out of the mixing passage into a pressure energy, between an inner peripheral surface of the body and the passage formation member. The passage formation member is configured so that a spread angle of a portion forming an outlet side of the nozzle passage is smaller than a spread angle of a portion forming an inlet side of the nozzle passage in a cross-section parallel to an axial direction of the passage formation member.Type: GrantFiled: July 25, 2014Date of Patent: June 25, 2019Assignee: DENSO CORPORATIONInventors: Ryota Nakashima, Etsuhisa Yamada, Haruyuki Nishijima, Yoshiaki Takano
-
Patent number: 10316865Abstract: An ejector has a nozzle, a body, a passage defining member and a drive portion. The body has a refrigerant suction port and a pressure increasing portion. A nozzle passage is defined between an inner surface of the nozzle and an outer surface of the passage defining member and has a minimum sectional area portion, a tapered portion, and an expansion portion. The minimum sectional area portion has a smallest passage sectional area. The tapered portion is located upstream of the minimum sectional area portion in a refrigerant flow direction and has a passage sectional area decreasing toward the minimum sectional area portion gradually. The expansion portion is located downstream of the minimum sectional area portion in the refrigerant flow direction and has a passage sectional area increasing gradually. The passage defining member has a groove that is recessed to increase the passage sectional area of the nozzle passage.Type: GrantFiled: March 2, 2016Date of Patent: June 11, 2019Assignee: DENSO CORPORATIONInventors: Yoshiyuki Yokoyama, Haruyuki Nishijima, Etsuhisa Yamada, Ryota Nakashima, Yoshiaki Takano, Kazunori Mizutori, Yorito Kohara, Hiroshi Shintani
-
Publication number: 20190107124Abstract: An ejector includes a shaft coupled to a passage formation member defining a refrigerant passage inside a body, and the shaft is slidably supported by a support member fixed to the body. A drive mechanism moves the shaft in an axial direction to change a passage sectional area of the refrigerant passage. The passage formation member is provided with a vibration suppressive member including a first mobile end that applies a load to enlarge the refrigerant passage and a second mobile end that applies a load to narrow the refrigerant passage. Both the first mobile end and the second mobile end are disposed on a same side of a slide region of the support member in the axial direction.Type: ApplicationFiled: December 4, 2018Publication date: April 11, 2019Inventors: Yoichiro KAWAMOTO, Kazunori MIZUTORI, Etsuhisa YAMADA, Teruyuki HOTTA, Eitaro TANAKA
-
Patent number: 10077923Abstract: An ejector includes a body part having a depressurizing space in which a refrigerant flowing out of a swirling space is depressurized, a suction passage that draws a refrigerant from an external, and a pressurizing space in which the refrigerant from the depressurizing space is mixed with the refrigerant from the suction passage, a conical passage formation member that is arranged in the body part, and a driving device that displaces a nozzle body of the body part forming the depressurizing space. A nozzle passage is defined on an outer peripheral side of the passage formation member in the depressurizing space, a diffuser passage is formed on an outer peripheral side of the passage formation member in the pressurizing space, and an actuating bar that couples the driving device with the nozzle body is arranged without crossing the diffuser passage.Type: GrantFiled: November 28, 2013Date of Patent: September 18, 2018Assignee: DENSO CORPORATIONInventors: Tatsuhiro Suzuki, Haruyuki Nishijima, Etsuhisa Yamada
-
Patent number: 10047986Abstract: A body part of a decompression device is provided with a swirling space that allows a refrigerant from a refrigerant inlet to swirl, a throttle space that depressurizes the refrigerant that has flowed out of the swirling space, and a downstream-side space that is disposed on the downstream side of the throttle space in a refrigerant flow and is formed so that the pressure of a refrigerant present in the downstream-side space becomes uniform.Type: GrantFiled: May 21, 2013Date of Patent: August 14, 2018Assignee: DENSO CORPORATIONInventors: Ryoko Awa, Etsuhisa Yamada, Haruyuki Nishijima, Yoshiaki Takano
-
Patent number: 10029538Abstract: An ejector-type refrigeration cycle includes a radiator radiating heat of refrigerant discharged from a compressor, an ejector depressurizing the refrigerant cooled in the radiator, a gas-liquid separator separating gas and liquid of the refrigerant flowing out of a diffuser portion of the ejector, an evaporator disposed in a refrigerant passage connecting the gas-liquid separator and a refrigerant suction port of the ejector, and an opening-closing valve switching between a first refrigerant flow path, in which an ejection refrigerant ejected from a nozzle portion of the ejector flows out of the diffuser portion, and a second refrigerant flow path, in which the ejection refrigerant flows out of the refrigerant suction port. When a rotation rate of the compressor is lower than or equal to a standard rotation rate, the first refrigerant flow path is switched to the second refrigerant flow path.Type: GrantFiled: September 15, 2014Date of Patent: July 24, 2018Assignee: DENSO CORPORATIONInventors: Yoichiro Kawamoto, Etsuhisa Yamada, Haruyuki Nishijima, Yoshiaki Takano, Yoshiyuki Yokoyama
-
Patent number: 9897354Abstract: In an ejector, a passage formation member is disposed inside a body forming a space therein. Provided between an inner peripheral surface of the body and the passage formation member are a nozzle passage functioning as a nozzle, a mixing passage in which an ejection refrigerant ejected from the nozzle passage and a suction refrigerant drawn through a suction passage are mixed together, and a diffuser passage that converts a kinetic energy of the refrigerant that has flowed out of the mixing passage into a pressure energy. The mixing passage has a shape gradually reducing in cross-sectional area toward a downstream side in the refrigerant flow.Type: GrantFiled: July 22, 2014Date of Patent: February 20, 2018Assignee: DENSO CORPORATIONInventors: Yoshiyuki Yokoyama, Etsuhisa Yamada, Haruyuki Nishijima
-
Publication number: 20180045225Abstract: An ejector has a nozzle, a body, a passage defining member and a drive portion. The body has a refrigerant suction port and a pressure increasing portion. A nozzle passage is defined between an inner surface of the nozzle and an outer surface of the passage defining member and has a minimum sectional area portion, a tapered portion, and an expansion portion. The minimum sectional area portion has a smallest passage sectional area. The tapered portion is located upstream of the minimum sectional area portion in a refrigerant flow direction and has a passage sectional area decreasing toward the minimum sectional area portion gradually. The expansion portion is located downstream of the minimum sectional area portion in the refrigerant flow direction and has a passage sectional area increasing gradually. The passage defining member has a groove that is recessed to increase the passage sectional area of the nozzle passage.Type: ApplicationFiled: March 2, 2016Publication date: February 15, 2018Inventors: Yoshiyuki YOKOYAMA, Haruyuki NISHIJIMA, Etsuhisa YAMADA, Ryota NAKASHIMA, Yoshiaki TAKANO, Kazunori MIZUTORI, Yorito KOHARA, Hiroshi SHINTANI
-
Patent number: 9879887Abstract: An ejector has a swirling space, a pressure reducing space, a suction passage, a pressure increasing space, a nozzle passage, a diffuser passage, a passage forming member that forms the nozzle passage and the diffuser passage, and a vibration suppressing portion that suppresses a vibration of the passage forming member. The vibration suppressing portion has (i) a first elastic member that applies a load to the passage forming member in a direction in which an area of a cross section perpendicular to the direction of the central axis of the nozzle passage and the diffuser passage decreases and (ii) a second elastic member that applies a load to the passage forming member in a direction opposite from the direction in which the first elastic member applies the load to the passage forming member.Type: GrantFiled: December 16, 2014Date of Patent: January 30, 2018Assignee: DENSO CORPORATIONInventors: Toru Takahashi, Eitaro Tanaka, Satoshi Inoue, Masatoshi Kuroyanagi, Yoichiro Kawamoto, Etsuhisa Yamada, Haruyuki Nishijima
-
Patent number: 9857102Abstract: An ejector includes a swirl flow channel that is arranged on an upstream side of a nozzle portion. The swirl flow channel swirls the high pressure refrigerant and allows the refrigerant in a state of a gas-liquid mixed phase to flow into the nozzle portion. The ejector further includes a flow-rate changeable mechanism that is disposed at the upstream side of the swirl flow channel, and is capable of changing a flow rate of the high pressure refrigerant that flows into the swirl flow channel. Accordingly, a nozzle efficiency can be improved, and an operation according to a load of the refrigeration cycle is possible.Type: GrantFiled: February 21, 2013Date of Patent: January 2, 2018Assignee: DENSO CORPORATIONInventors: Etsuhisa Yamada, Haruyuki Nishijima, Yoshiaki Takano
-
Patent number: 9816738Abstract: An approximately conical passage-forming member is disposed inside a body in which a swirling space for swirling a refrigerant is formed, and an ejector defines therein a nozzle passage that functions as a nozzle for depressurizing a refrigerant that has flowed out from the swirling space between an inner circumferential surface of the body and the passage-forming member, and a diffuser passage that pressurizes a mixed refrigerant obtained from a refrigerant sprayed from the nozzle passage and a refrigerant drawn from a suction-passage. A plurality of driving passages through which a refrigerant is introduced from a distribution space to the swirling space are formed in the body. In this case, the driving passages are formed in a manner such that a refrigerant flowing in from each driving passage into the swirling space flows along an outer circumference of the swirling space and flows in directions different from each other. Accordingly, nozzle efficiency is sufficiently improved.Type: GrantFiled: July 24, 2014Date of Patent: November 14, 2017Assignee: DENSO CORPORATIONInventors: Ryota Nakashima, Etsuhisa Yamada, Haruyuki Nishijima, Yoshiaki Takano
-
Patent number: 9784487Abstract: A body part of a decompression device has a swirl space for swirling a refrigerant that flows from a refrigerant inlet, and a refrigerant outlet that is positioned on an extension line of a swirl center line of the refrigerant and functions as a throttle. Further, a passage cross-sectional area of the refrigerant inlet is configured to be smaller than a twelve-fold value of a passage cross-sectional size of the refrigerant outlet, such that a swirl speed of the refrigerant in the swirl space is increased so as to enable a decompression boiling of the refrigerant around the swirl center line. In such manner, a gas-liquid mixture phase refrigerant securely flows into the refrigerant outlet, and it restricts a fluctuation of a flow amount of the refrigerant flowing toward a downstream side without complicating a cycle structure.Type: GrantFiled: March 21, 2012Date of Patent: October 10, 2017Assignee: DENSO CORPORATIONInventors: Tatsuhiro Suzuki, Etsuhisa Yamada, Haruyuki Nishijima
-
Patent number: 9771954Abstract: A mixing portion that mixes an injection refrigerant and a suction refrigerant is formed in a range of an internal space of a heating-side body portion of a heating-side ejector from a refrigerant injection port of a heating-side nozzle portion to an inlet of a heating-side diffuser. Further, the mixing portion is formed in a shape that gradually decreases a refrigerant passage area toward a downstream side of a refrigerant flow, and a refrigerant passage area of the inlet of the heating-side diffuser is set smaller than that of the refrigerant injection port. Thus, the flow velocity of the mixed refrigerant is decelerated to a value lower than a two phase sound velocity within the mixing portion, thereby suppressing occurrence of shock wave in the heating-side diffuser and stabilizing the pressure increasing performance in the heating-side diffuser.Type: GrantFiled: November 1, 2013Date of Patent: September 26, 2017Assignee: DENSO CORPORATIONInventors: Ryoko Awa, Haruyuki Nishijima, Yoshiaki Takano, Etsuhisa Yamada, Satoshi Itoh, Kenta Kayano