Patents by Inventor Etsuhisa Yamada

Etsuhisa Yamada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7707849
    Abstract: A first evaporator connected to an outlet side of an ejector, a second evaporator connected to a refrigerant suction port of the ejector, a throttle mechanism arranged on an inlet side of a refrigerant flow of the second evaporator and for reducing the pressure of the refrigerant flow are provided. Furthermore, the ejector, the first evaporator, the second evaporator and the throttle mechanism are assembled integrally with each other to construct an integrated unit having one refrigerant inlet and one refrigerant outlet. Hence, mounting performance of an ejector type refrigeration cycle can be improved.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: May 4, 2010
    Assignee: Denso Corporation
    Inventors: Naohisa Ishizaka, Hirotsugu Takeuchi, Yoshiaki Takano, Mika Gocho, Hiroshi Oshitani, Haruyuki Nishijima, Makoto Ikegami, Naoki Yokoyama, Etsuhisa Yamada
  • Patent number: 7690218
    Abstract: An ejector refrigerant cycle device includes a radiator for radiating heat of high-temperature and high-pressure refrigerant discharged from a compressor, a branch portion for branching a flow of refrigerant on a downstream side of the radiator into a first stream and a second stream, an ejector that includes a nozzle portion for decompressing and expending refrigerant of the first stream from the branch portion, a decompression portion for decompressing and expanding refrigerant of the second stream from the branch portion, and an evaporator for evaporating refrigerant on a downstream side of the decompression portion. The evaporator has a refrigerant outlet coupled to the refrigerant suction port of the ejector. Furthermore, a refrigerant radiating portion is provided for radiating heat of refrigerant while the decompression portion decompresses and expands refrigerant. For example, the refrigerant radiating portion is provided in an inner heat exchanger.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: April 6, 2010
    Assignee: Denso Corporation
    Inventors: Makoto Ikegami, Hirotsugu Takeuchi, Etsuhisa Yamada, Haruyuki Nishijima, Hideya Matsui
  • Publication number: 20100024453
    Abstract: A mixed refrigerant including a plurality of component refrigerants circulates in a refrigeration cycle device. An expansion valve includes a power element. A filled fluid filled in the power element is one component refrigerant in the plurality of component refrigerants. A slope of a saturated vapor pressure curve of the filled fluid is larger than the slope of the saturated vapor pressure curve SV0 of the mixed refrigerant. Thereby, an opening degree of the expansion valve can be prevented from exceeding in a low-temperature region, and the opening degree corresponding to a load can be obtained in a high-temperature region.
    Type: Application
    Filed: July 16, 2009
    Publication date: February 4, 2010
    Applicant: DENSO CORPORATION
    Inventors: Hideya Matsui, Haruyuki Nishijima, Etsuhisa Yamada
  • Publication number: 20090297367
    Abstract: A housing is configured into a tubular form and receives at least a portion of an ejector functional unit, which includes a nozzle and a body. A housing side opening radially penetrates through an outer peripheral wall surface and an inner peripheral wall surface of the housing and communicates with the fluid suction opening of the body. The housing side opening is adapted to join with a suction opening side external device, through which the fluid is drawn into the fluid suction opening.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 3, 2009
    Applicant: DENSO CORPORATION
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Kazunori Mizutori, Gouta Ogata, Hideya Matsui, Hiroshi Oshitani, Youhei Nagano
  • Publication number: 20090229306
    Abstract: A vapor compression refrigerating cycle apparatus includes a compressor, a radiator, a first decompressing device, a second decompressing device, a flow distributor, an ejector, and a suction-side evaporator. The vapor compression refrigerating cycle apparatus is configured such that refrigerant pressure (P0) at an inlet of the first decompressing device, refrigerant pressure (P) at an inlet of a nozzle portion of the ejector, refrigerant pressure (P2) at an outlet of the nozzle portion satisfy a pressure relationship of 0.1×(P0?P2)?(P0?P)?0.6×(P0?P2). Alternative to or in addition to the pressure relationship, the vapor compression refrigerating cycle apparatus is configured such that a dryness of refrigerant at the inlet of the nozzle portion is in a range between 0.003 and 0.14.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 17, 2009
    Applicant: DENSO CORPORATION
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Gouta Ogata, Mika Gocho, Hideya Matsui
  • Publication number: 20090232665
    Abstract: An ejector includes a nozzle for decompressing a fluid in any one state of a gas-liquid state, a liquid state and a super-critical state, and a body portion having a fluid suction port and a mixing and pressurizing portion. The ejector is provided with a suction passage through which a fluid drawn from the fluid suction port flows into the mixing and pressurizing portion. The suction passage is changed such that the fluid drawn from the fluid suction port is decompressed in the suction passage in iso-entropy. Alternatively, the suction passage is changed such that a flow velocity of the fluid flowing into the mixing and pressurizing portion from the suction passage is substantially equal to a flow velocity of the fluid flowing from a jet port of the nozzle into the mixing and pressurizing portion, or is equal to or larger than the sound velocity.
    Type: Application
    Filed: March 11, 2009
    Publication date: September 17, 2009
    Applicant: DENSO CORPORATION
    Inventors: Mika Gocho, Yoshiaki Takano, Haruyuki Nishijima, Gouta Ogata, Etsuhisa Yamada, Teruyuki Hano, Kenta Kayano
  • Publication number: 20090229304
    Abstract: An ejector device includes a nozzle having an inner wall surface defining a circular cross-sectional fluid passage extending from an inlet to a jet port. Furthermore, the fluid passage has a throat portion at a position between the inlet and the jet port, and a passage expanding portion in which the cross-sectional area of the fluid passage is enlarged from the throat portion as toward downstream. The passage expanding portion includes a middle portion in which the inner wall surface is expanded in a fluid flow direction by a first expanding angle, and an outlet portion from a downstream end of the middle portion to the jet port, in which the inner wall surface is expanded in the fluid flow direction by a second expanding angle that is larger than the first expanding angle. The ejector device can be suitably used for a refrigeration cycle apparatus.
    Type: Application
    Filed: March 3, 2009
    Publication date: September 17, 2009
    Applicant: DENSO CORPORATION
    Inventors: Gouta Ogata, Haruyuki Nishijima, Etsuhisa Yamada, Mika Gocho, Hideya Matsui, Kenta Kayano, Teruyuki Hano
  • Publication number: 20090229305
    Abstract: A vapor compression refrigerating cycle apparatus includes a compressor, a radiator, first and second throttle devices, a flow distributor, an ejector, a suction passage, and first and second evaporators. The flow distributor separates refrigerant decompressed through the first throttle device into a first passage and a second passage. The first passage is in communication with a nozzle portion of the ejector. The second passage is in communication with a suction portion of the ejector through the suction passage. The second throttle device and the second evaporator are disposed on the suction passage. The flow distributor is configured to be capable of adjusting a ratio of a flow rate of refrigerant passing through the second passage to a flow rate of refrigerant passing through the first passage in accordance with a heat load of at least one of the radiator, the first evaporator and the second evaporator.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 17, 2009
    Applicant: DENSO CORPORATION
    Inventors: Etsuhisa Yamada, Haruyuki Nishijima, Gouta Ogata, Mika Gocho, Kenta Kayano
  • Publication number: 20090095013
    Abstract: An ejector cycle system with a refrigerant cycle through which refrigerant flows includes an ejector disposed downstream of a radiator, a first evaporator located to evaporate refrigerant flowing out of the ejector, a branch passage branched from a branch portion between the radiator and a nozzle portion of the ejector and coupled to a refrigerant suction port of the ejector, a throttling unit located in the branch passage, and a second evaporator located downstream of the throttling unit to evaporate refrigerant. In the ejector cycle system, a variable throttling device is located in a refrigerant passage between a refrigerant outlet of the radiator and the branch portion to decompress the refrigerant flowing out of the radiator.
    Type: Application
    Filed: December 8, 2008
    Publication date: April 16, 2009
    Inventors: Makoto Ikegami, Hiroshi Oshitani, Etsuhisa Yamada, Naohisa Ishizaka, Hirotsugu Takeuchi, Takeyuki Sugiura, Takuo Maehara
  • Publication number: 20090090129
    Abstract: In a refrigerant cycle device with an ejector, a branch portion is located at an upstream side of a nozzle portion of the ejector so that the refrigerant flowing out of an exterior heat exchanger is branched into first and second streams in a cooling operation mode. A passage switching portion is configured such that the refrigerant of the first stream flows through the nozzle portion of the ejector, and the refrigerant of the second stream flows through the decompression unit, the using-side heat exchanger, and the refrigerant suction port of the ejector, in the cooling operation mode. In contrast, the refrigerant discharged from the compressor flows into the nozzle portion after passing through the using-side heat exchanger, and the refrigerant flowing out of the exterior heat exchanger flows into the refrigerant suction port of the ejector, in the heating operation mode.
    Type: Application
    Filed: October 2, 2008
    Publication date: April 9, 2009
    Applicants: DENSO CORPORATION, Nippon Soken, Inc.
    Inventors: Makoto Ikegami, Etsuhisa Yamada, Haruyuki Nishijima, Hiroshi Oshitani, Yukikatsu Ozaki
  • Patent number: 7513128
    Abstract: An ejector-type cycle, for exchanging heat using a refrigerant, comprises: a compressor for compressing the refrigerant; a condenser for condensing the compressed refrigerant, a first orifice arranged downstream of the condenser; an ejector arranged downstream of the first orifice and capable of exhibiting a sucking force at the inlet thereof; a first evaporator for exchanging heat with an external fluid by passing the refrigerant and having a refrigerant outlet connected to the inlet of the ejector; a dryness degree adjusting mechanism interposed between the first orifice and the ejector and connected to the ejector and the first evaporator so as to supply the refrigerant thereto, and a second orifice arranged downstream of and connected to the dryness degree adjusting mechanism.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: April 7, 2009
    Assignee: Denso Corporation
    Inventors: Etsuhisa Yamada, Hirotsugu Takeuchi, Haruyuki Nishijima
  • Publication number: 20080264097
    Abstract: A first evaporator connected to an outlet side of an ejector, a second evaporator connected to a refrigerant suction port of the ejector, a throttle mechanism arranged on an inlet side of a refrigerant flow of the second evaporator and for reducing the pressure of the refrigerant flow are provided. Furthermore, the ejector, the first evaporator, the second evaporator and the throttle mechanism are assembled integrally with each other to construct an integrated unit having one refrigerant inlet and one refrigerant outlet. Hence, mounting performance of an ejector type refrigeration cycle can be improved.
    Type: Application
    Filed: April 4, 2006
    Publication date: October 30, 2008
    Applicant: Denso Corporation
    Inventors: Naohisa Ishizaka, Hirotsugu Takeuchi, Yoshiaki Takano, Mika Gocho, Hiroshi Oshitani, Haruyuki Nishijima, Makoto Ikegami, Naoki Yokoyama, Etsuhisa Yamada
  • Patent number: 7367200
    Abstract: An ejector cycle device includes an ejector having a nozzle portion which decompresses refrigerant flowing out of a radiator, a first evaporator for evaporating refrigerant from the ejector, and a second evaporator provided in a branch passage that is branched from a position between the refrigerant radiator and the ejector and is connected to a refrigerant suction port of the ejector. Furthermore, a throttle member is disposed in the branch passage to decompress refrigerant and adjust a flow amount of refrigerant, and the second evaporator is disposed in the branch passage between the throttle member and the refrigerant suction port. In the ejector cycle device having both the first and second evaporators, a defrosting operation of one the first and second evaporators can be performed while the other one of the first and second evaporators is operated to have a cooling function.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: May 6, 2008
    Assignee: Denso Corporation
    Inventors: Makoto Ikegami, Hirotsugu Takeuchi, Haruyuki Nishijima, Hiroshi Oshitani, Etsuhisa Yamada, Takuo Maehara
  • Patent number: 7367202
    Abstract: A refrigerant cycle device includes a compressor for compressing refrigerant, a condenser for cooling and condensing high-pressure refrigerant discharged from the compressor, a vapor-liquid separator located at a refrigerant outlet side of the condenser for separating refrigerant from the condenser into vapor refrigerant and liquid refrigerant, a supercooling device for supercooling the liquid refrigerant from the vapor-liquid separator, an ejector having a nozzle part for decompressing refrigerant downstream from a refrigerant outlet side of the condenser and a refrigerant suction port for drawing refrigerant by a high-velocity flow of refrigerant jetted from the nozzle part, a throttle member which decompresses the liquid refrigerant supercooled by the supercooling device, an evaporator located at a downstream side of the throttle member and is connected to the refrigerant suction port of the ejector.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: May 6, 2008
    Assignee: Denso Corporation
    Inventors: Etsuhisa Yamada, Hirotsugu Takeuchi, Haruyuki Nishijima
  • Publication number: 20080041079
    Abstract: A refrigerant cycle device having an ejector includes a first evaporator for evaporating refrigerant flowing out of the ejector, a first passage portion for guiding refrigerant to a refrigerant suction port of the ejector, a throttle unit located in the first passage portion, a second evaporator located in the first passage portion downstream of the throttle unit, a bypass passage portion for guiding hot gas refrigerant from a compressor into the second evaporator, a bypass opening and closing unit provided in the bypass passage portion. Furthermore, a second passage portion is branched from the bypass passage portion downstream of the bypass opening and closing unit, and a flow control unit is provided in the second passage portion to prevent a flow of refrigerant from the first evaporator to the second evaporator through the second passage portion. Therefore, defrosting of both the first and second evaporators can be suitably performed.
    Type: Application
    Filed: June 21, 2007
    Publication date: February 21, 2008
    Applicant: DENSO Corporation
    Inventors: Haruyuki Nishijima, Etsuhisa Yamada, Hideya Matsui, Hirotsugu Takeuchi, Gentarou Oomura, Ryoko Fujiwara
  • Publication number: 20080000263
    Abstract: A distributor able to evenly supply influent two-phase refrigerant flowing in by various flow states to different pipes with an extremely small pressure loss, that is, a distributor of a gas-liquid two-phase fluid distributing a gas-liquid two-phase fluid flowing in from an inlet pipe into a plurality of distribution pipes, provided with a cylindrical vessel with a cylindrical upper part, an inlet pipe connected in a tangential direction with respect to a circular cross section of the upper portion of the cylindrical vessel, and distribution pipes connected to a lower portion of the cylindrical vessel.
    Type: Application
    Filed: June 26, 2007
    Publication date: January 3, 2008
    Applicant: DENSO Corporation
    Inventors: Gentarou Oomura, Haruyuki Nishijima, Etsuhisa Yamada, Hirotsugu Takeuchi, Hideya Matsui, Ryoko Fujiwara
  • Publication number: 20070163293
    Abstract: An ejector refrigerant cycle device includes a radiator for radiating heat of high-temperature and high-pressure refrigerant discharged from a compressor, a branch portion for branching a flow of refrigerant on a downstream side of the radiator into a first stream and a second stream, an ejector that includes a nozzle portion for decompressing and expending refrigerant of the first stream from the branch portion, a decompression portion for decompressing and expanding refrigerant of the second stream from the branch portion, and an evaporator for evaporating refrigerant on a downstream side of the decompression portion. The evaporator has a refrigerant outlet coupled to the refrigerant suction port of the ejector. Furthermore, a refrigerant radiating portion is provided for radiating heat of refrigerant while the decompression portion decompresses and expands refrigerant. For example, the refrigerant radiating portion is provided in an inner heat exchanger.
    Type: Application
    Filed: January 12, 2007
    Publication date: July 19, 2007
    Applicant: DENSO Corporation
    Inventors: Makoto Ikegami, Hirotsugu Takeuchi, Etsuhisa Yamada, Haruyuki Nishijima, Hideya Matsui
  • Publication number: 20070119207
    Abstract: An ejector-type refrigerant cycle device includes: a first evaporator 15 that evaporates refrigerant flowing out of an ejector 14; a branch passage 17 that branches a flow of refrigerant between a radiator 13 and the ejector 14 and guides this flow of refrigerant to a vapor-phase refrigerant suction port 14c of the ejector 14; a throttling mechanism 18 disposed in the branch passage 17; and a second evaporator 19 disposed downstream of the throttling mechanism 18 with respect to the flow of refrigerant. The throttling mechanism 18 is constructed to be provided with a fully opening function, and to fully open the branch passage 17 when the second evaporator 19 is defrosted. Therefore, in an ejector-type refrigerant cycle device including multiple evaporators, the function of defrosting the evaporators can be carried out with a simple construction.
    Type: Application
    Filed: September 22, 2005
    Publication date: May 31, 2007
    Applicant: Denso Corporation
    Inventors: Hiroshi Oshitani, Hirotsugu Takeuchi, Etsuhisa Yamada, Haruyuki Nishijima
  • Publication number: 20070039337
    Abstract: An ejector cycle device includes a compressor, a refrigerant radiator, an ejector having a nozzle part and a refrigerant suction port, and a branch passage for introducing refrigerant branched on an upstream side of the nozzle part of the ejector in a refrigerant flow into the refrigerant suction port. Furthermore, a first evaporator is arranged on a downstream side of the ejector in the refrigerant flow, and a second evaporator is arranged in the branch passage. In addition, in the ejector cycle device, a refrigerant flow rate ratio (?) of a flow rate of refrigerant flowing in the second evaporator to a flow rate of refrigerant discharged from the compressor is set within a range from 0.07 or more to 0.93 or less. In this case, COP of the ejector cycle device can be effectively improved.
    Type: Application
    Filed: August 9, 2006
    Publication date: February 22, 2007
    Applicant: DENSO Corporation
    Inventors: Haruyuki Nishijima, Hirotsugu Takeuchi, Etsuhisa Yamada, Makoto Ikegami, Hiroshi Oshitani
  • Publication number: 20070039349
    Abstract: A refrigerant cycle device includes a compressor for compressing refrigerant, a condenser for cooling and condensing high-pressure refrigerant discharged from the compressor, a vapor-liquid separator located at a refrigerant outlet side of the condenser for separating refrigerant from the condenser into vapor refrigerant and liquid refrigerant, a supercooling device for supercooling the liquid refrigerant from the vapor-liquid separator, an ejector having a nozzle part for decompressing refrigerant downstream from a refrigerant outlet side of the condenser and a refrigerant suction port for drawing refrigerant by a high-velocity flow of refrigerant jetted from the nozzle part, a throttle member which decompresses the liquid refrigerant supercooled by the supercooling device, an evaporator located at a downstream side of the throttle member and is connected to the refrigerant suction port of the ejector.
    Type: Application
    Filed: August 14, 2006
    Publication date: February 22, 2007
    Applicant: DENSO Corporation
    Inventors: Etsuhisa Yamada, Hirotsugu Takeuchi, Haruyuki Nishijima