Patents by Inventor Eugene O. Degenkolb

Eugene O. Degenkolb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8658937
    Abstract: A method and apparatus for processing substrate edges is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The edge processing method and apparatus of this invention includes a laser and optical system to direct a beam of radiation onto a rotating substrate supported by a chuck, in atmosphere. The optical system accurately and precisely directs the beam to remove or transform organic or inorganic films, film stacks, residues, or particles from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate. An optional gas injector system directs gas onto the substrate edge to aid in the reaction. Process by-products are removed via an exhaust tube enveloping the reaction site. This invention permits precise control of an edge exclusion zone, resulting in an increase in the number of usable die on a wafer.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: February 25, 2014
    Assignee: UVTech Systems, Inc.
    Inventors: Kenneth J. Harte, Ronald P. Millman, Jr., Victoria M. Chaplick, David J. Elliott, Eugene O. Degenkolb, Murray L. Tardif
  • Patent number: 8410394
    Abstract: A method and apparatus for processing substrate edges is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The edge processing method and apparatus of this invention includes a laser and optical system to direct a beam of radiation onto a rotating substrate supported by a chuck. The optical system accurately and precisely directs the beam to remove or transform organic or inorganic films, film stacks, residues, or particles, in atmosphere, from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate in a single process step. An optional gas injector system directs gas onto the substrate edge to aid in the reaction. Reaction by-products are removed by means of an exhaust tube enveloping the reaction site. This invention permits precise control of an edge exclusion width, resulting in an increase in the number of usable die on a wafer.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: April 2, 2013
    Assignee: UVTech Systems, Inc.
    Inventors: Ronald P. Millman, Jr., Kenneth J. Harte, Victoria M. Chaplick, David J. Elliott, Murray L. Tardif, Eugene O. Degenkolb
  • Publication number: 20110185971
    Abstract: The disclosed apparatus and method provides substrate impurity doping wherein a laser rapidly scans a substrate while simultaneously a uniform laminar flow of reactive gas is injected, the interaction of the laser radiation and the dopant results in a uniform diffusion of the dopant species in all planes (X,Y,Z) of the substrate. Laser energy density, wavelength, and pulse geometry are adjustable, in a simple system for volume manufacturing, to provide depth and dose control of the dopant. The system optics can be focused to form a high resolution laser beam to directly write the doping area pattern geometry. Alternatively the laser beam can be optically expanded to form a large diameter beam for large area diffusion of the dopant through a patterned mask.
    Type: Application
    Filed: November 30, 2010
    Publication date: August 4, 2011
    Applicant: UVTech Systems, Inc.
    Inventors: David J. Elliott, Kenneth J. Harte, Ronald P. Millman, JR., Victoria M. Chaplick, Eugene O. Degenkolb
  • Publication number: 20110168672
    Abstract: A method and apparatus for processing substrate edges is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The edge processing method and apparatus of this invention includes a laser and optical system to direct a beam of radiation onto a rotating substrate supported by a chuck, in atmosphere. The optical system accurately and precisely directs the beam to remove or transform organic or inorganic films, film stacks, residues, or particles from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate. An optional gas injector system directs gas onto the substrate edge to aid in the reaction. Process by-products are removed via an exhaust tube enveloping the reaction site. This invention permits precise control of an edge exclusion zone, resulting in an increase in the number of usable die on a wafer.
    Type: Application
    Filed: January 7, 2011
    Publication date: July 14, 2011
    Applicant: UVTech Systems, Inc.
    Inventors: Kenneth J. Harte, Ronald P. Millman, JR., Victoria M. Chaplick, David J. Elliott, Eugene O. Degenkolb, Murray L. Tardif
  • Publication number: 20110147350
    Abstract: A modular wafer edge processing apparatus is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The modular apparatus can be integrated into wafer tracks, cluster tools, and other volume manufacturing systems. The edge processing apparatus of this invention includes a laser that can either be contained inside the module, or mounted externally to feed multiple modules and thereby reduce system cost. The apparatus contains a beam delivery subsystem to direct a beam of radiation onto the edges of a rotating substrate supported by a chuck. The optical system accurately and precisely directs the beam to remove or transform organic or inorganic films, film stacks, residues, or particles, in atmosphere, from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate in a single process step. Reaction by-products are removed by means of an exhaust tube enveloping the reaction site.
    Type: Application
    Filed: February 24, 2011
    Publication date: June 23, 2011
    Applicant: UVTech Systems Inc.
    Inventors: Ronald P. Millman, JR., Kenneth J. Harte, Victoria M. Chaplick, David J. Elliott, Eugene O. Degenkolb
  • Publication number: 20110139757
    Abstract: A method and apparatus for processing substrate edges is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The edge processing method and apparatus of this invention includes a laser and optical system to direct a beam of radiation onto a rotating substrate supported by a chuck. The optical system accurately and precisely directs the beam to remove or transform organic or inorganic films, film stacks, residues, or particles, in atmosphere, from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate in a single process step. An optional gas injector system directs gas onto the substrate edge to aid in the reaction. Reaction by-products are removed by means of an exhaust tube enveloping the reaction site. This invention permits precise control of an edge exclusion width, resulting in an increase in the number of usable die on a wafer.
    Type: Application
    Filed: February 24, 2011
    Publication date: June 16, 2011
    Inventors: Ronald P. Millman, JR., Kenneth J. Harte, Victoria M. Chaplick, David J. Elliott, Murray L. Tardif, Eugene O. Degenkolb
  • Patent number: 4631806
    Abstract: Method of producing two-layer metal interconnections in a semiconductor integrated circuit structure coated with silicon dioxide. Masking material is deposited on the silicon dioxide. Openings are formed in the masking material and then in the silicon dioxide to expose contact areas on the integrated circuit structure. A first metal, tungsten, is deposited on the masking material and on the contact areas exposed at the openings. The masking material and the overlying tungsten are stripped off leaving tungsten only on the contact areas. A second metal, aluminum, is deposited over the silicon dioxide and the tungsten on the contact areas. Aluminum is selectively removed to form a pattern of conductive members of tungsten-aluminum on the contact areas and of aluminum over the silicon dioxide.
    Type: Grant
    Filed: May 22, 1985
    Date of Patent: December 30, 1986
    Assignee: GTE Laboratories Incorporated
    Inventors: Paul E. Poppert, Marvin J. Tabasky, Eugene O. Degenkolb
  • Patent number: 4633290
    Abstract: Method of forming a substrate for fabricating CMOS FET's by forming sections of N and P-type conductivity in a body of silicon. Grooves are etched in the N and P-type sections to produce N and P-type sectors encircled by grooves. The surfaces of the grooves are oxidized, the grooves are filled with polycrystalline silicon, and exposed surfaces of the polycrystalline silicon are oxidized to form barriers which encircle the sectors and electrically isolate them. Shallow trenches are etched in regions of the body outside the N and P-type sectors and the trenches are filled with regions of silicon dioxide. A pair of complementary FET's are fabricated in the two sectors and a metal interconnection between them overlies a portion of a region of silicon dioxide.
    Type: Grant
    Filed: February 28, 1986
    Date of Patent: December 30, 1986
    Assignee: GTE Laboratories Incorporated
    Inventors: Paul E. Poppert, Marvin J. Tabasky, Eugene O. Degenkolb
  • Patent number: 4593459
    Abstract: Method of forming a substrate for fabricating CMOS FET's by forming sections of N and P-type conductivity in a body of silicon. Grooves are etched in the N and P-type sections to produce N and P-type sectors encircled by grooves. The surfaces of the grooves are oxidized, the grooves are filled with polycrystalline silicon, and exposed surfaces of the polycrystalline silicon are oxidized to form barriers which encircle the sectors and electrically isolate them. Shallow trenches are etched in regions of the body outside the N and P-type sectors and the trenches are filled with regions of silicon dioxide. A pair of complementary FET's are fabricated in the two sectors and a metal interconnection between them overlies a portion of a region of silicon dioxide.
    Type: Grant
    Filed: December 28, 1984
    Date of Patent: June 10, 1986
    Assignee: GTE Laboratories Incorporated
    Inventors: Paul E. Poppert, Marvin J. Tabasky, Eugene O. Degenkolb
  • Patent number: 4312732
    Abstract: The endpoints of plasma discharge processing operations (e.g., plasma stripping of photoresists and plasma etching) are determined by monitoring the light produced in the space surrounding the object being processed. The optical monitor includes a wavelength selective device which is adjusted to transmit light from a selected excited species, which includes particles from the surface being processed. The surface includes a layer of one material overlaying a second material. If the selected excited species includes particles of the first material, then the endpoint of the removal operation occurs when the monitored intensity falls below a predetermined threshold level. When the selected excited species includes particles of the second material, then the endpoint occurs when the monitored intensity rises above a preselected threshold level.
    Type: Grant
    Filed: March 10, 1980
    Date of Patent: January 26, 1982
    Assignee: Bell Telephone Laboratories, Incorporated
    Inventors: Eugene O. Degenkolb, James E. Griffiths, Cyril J. Mogab