Patents by Inventor Eunkee Hong

Eunkee Hong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110306195
    Abstract: In a vertical semiconductor device and a method of manufacturing a vertical semiconductor device, sacrificial layers and insulating interlayers are repeatedly and alternately stacked on a substrate. The sacrificial layers include boron (B) and nitrogen (N) and have an etching selectivity with respect to the insulating interlayers. Semiconductor patterns are formed on the substrate through the sacrificial layers and the insulating interlayers. The sacrificial layers and the insulating interlayers are at least partially removed between the semiconductor patterns to form sacrificial layer patterns and insulating interlayer patterns on sidewalls of the semiconductor patterns. The sacrificial layer patterns are removed to form grooves between the insulating interlayer patterns. The grooves expose portions of the sidewalls of the semiconductor patterns. A gate structure is formed in each of the grooves.
    Type: Application
    Filed: May 3, 2011
    Publication date: December 15, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin-Gyun Kim, Bo-Young Lee, Ki-Hyun Hwang, Eunkee Hong, Jong-Wan Choi
  • Publication number: 20110281427
    Abstract: Example embodiments herein relate to a method of fabricating a semiconductor device. The method may include forming a liner insulating layer on a surface of a gate pattern to have a first thickness. Subsequently, a gap fill layer may be formed on the liner insulating layer by flowable chemical vapor deposition (FCVD) or spin-on-glass (SOG). The liner insulating layer and the gap fill layer may be recessed such that the liner insulating layer has a second thickness, which is smaller than the first thickness, in the region in which a metal silicide will be formed. Metal silicide may be formed on the plurality of gate patterns to have a relatively uniform thickness using the difference in thickness of the liner insulating layer.
    Type: Application
    Filed: March 22, 2011
    Publication date: November 17, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong-Soon Choi, Ha-Young Yi, Gil-Heyun Choi, Eunkee Hong, Sang-Hoon Ahn
  • Patent number: 8043914
    Abstract: Provided are methods of fabricating flash memory devices that may prevent a short circuit from occurring between cell gate lines. Methods of fabricating such flash memory devices may include forming gate lines including a series of multiple cell gate lines and multiple selection gate lines. Each gate line may include a stacked structure of a tunnel insulating layer, a floating gate, a gate insulating layer, and/or a polysilicon layer operable to be a control gate, all formed on a semiconductor substrate. Methods may include forming a first insulating layer that selectively fills gaps between the cell gate lines from the bottom up and between adjacent ones of the cell gate lines and the selection gate lines, and does not fill a space located on outer sides of the selection gate lines that are opposite the plurality of cell gate lines. A spacer may be formed on the outer sides of the selection gate lines that are opposite to the cell gate lines, after forming the first insulating layer.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: October 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-wan Choi, Yong-soon Choi, Bo-young Lee, Eunkee Hong, Eun-kyung Baek, Ju-seon Goo
  • Publication number: 20110256708
    Abstract: A method of manufacturing a flash memory device includes: forming a dielectric layer on an active region of a substrate having an isolation region and the active region; forming a floating gate on the dielectric layer; forming an isolation layer in the isolation region; forming a nitride layer including a first nitride layer portion formed on an exposed surface of the floating gate and a second nitride layer portion formed on an exposed surface of the isolation layer; selectively removing nitrogen atoms from the second nitride layer portion of the nitride layer; forming an inter-gate dielectric layer on both the first nitride layer portion and the isolation layer; and forming a control gate on the inter-gate dielectric layer.
    Type: Application
    Filed: April 13, 2011
    Publication date: October 20, 2011
    Inventors: Jong-wan Choi, Wan-sik Hwang, Gil-heyun Choi, Eunkee Hong, Ju-seon Goo, Bo-young Lee
  • Publication number: 20110241184
    Abstract: An integrated circuit device includes a plurality of stacked circuit layers, at least one of the plurality of circuit layers including a composite interlayer insulation layer including laterally adjacent first and second insulating material regions having different mechanical strengths and dielectric properties and a plurality of circuit components disposed in the composite interlayer insulation layer. The first insulating material region may have a lower dielectric constant and a lower mechanical strength than the second insulating material region such that, for example, the first insulating material region may be positioned near signal lines or other circuit features to reduce capacitance while using the second insulating material region near a location that is susceptible to localized mechanical stress, such as a fuse location, an external connection bonding location or a scribe line location.
    Type: Application
    Filed: February 2, 2011
    Publication date: October 6, 2011
    Inventors: Kyu-hee Han, Sang-hoon Ahn, Eunkee Hong
  • Patent number: 8026147
    Abstract: Provided is a method of fabricating a semiconductor microstructure, the method including forming a lower material layer on a semiconductor substrate, the lower material layer including a nitride of a Group III-element; forming a mold material layer on the lower material layer; forming an etching mask on the mold material layer, the etching mask being for forming a structure in the mold material layer; anisotropic-etching the mold material layer and the lower material layer by using the etching mask; and isotropic-etching the mold material layer and the lower material layer.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: September 27, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yongsoon Choi, Kyung-moon Byun, Eunkee Hong, Eun-kyung Baek
  • Publication number: 20110127600
    Abstract: A semiconductor device and a method of fabricating thereof, including preparing a substrate including a first and second region; forming first and second conductive lines on the first and second region, respectively, the first conductive lines being spaced apart at a first interval and the second conductive lines being spaced apart at a second interval wider than the first interval; forming a dielectric layer in spaces between the first and second conductive lines; etching the dielectric layer until a top surface thereof is lower than top surfaces of the first conductive lines and the second conductive lines; forming a spacer on the etched dielectric layer such that the spacer covers an entire top surface of the etched dielectric layer between the first conductive lines and exposes portions of the etched dielectric layer between the second conductive lines; and removing portions of the etched dielectric layer between the second conductive lines.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 2, 2011
    Inventors: Honggun KIM, YongSoon CHOI, Ha-Young YI, Eunkee HONG
  • Publication number: 20110039393
    Abstract: Provided is a method of fabricating a semiconductor microstructure, the method including forming a lower material layer on a semiconductor substrate, the lower material layer including a nitride of a Group III-element; forming a mold material layer on the lower material layer; forming an etching mask on the mold material layer, the etching mask being for forming a structure in the mold material layer; anisotropic-etching the mold material layer and the lower material layer by using the etching mask; and isotropic-etching the mold material layer and the lower material layer.
    Type: Application
    Filed: August 13, 2010
    Publication date: February 17, 2011
    Inventors: Yongsoon Choi, Kyung-moon Byun, Eunkee Hong, Eun-kyung Baek
  • Patent number: 7858492
    Abstract: A method of filling a trench in a substrate ensures that a void or seam is not left in the material occupying the trench. First, a preliminary insulating layer is formed so as to extend contiguously along the bottom and sides of the trench and along an upper surface of the substrate. Impurities are then implanted into a portion of the preliminary insulating layer adjacent the top of the first trench to form a first insulating layer having a doped region and an undoped region. The doped region is removed to form a first insulating layer pattern at the bottom and sides of the first trench, and which first insulating layer pattern defines a second trench. The second trench is then filled with insulating material.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: December 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eunkee Hong, Kyung-Mun Byun, Jong-Wan Choi, Eun-Kyung Baek, Young-Sun Kim
  • Publication number: 20100248471
    Abstract: Provided is a method for fabricating a semiconductor device, including forming an interconnect structure including first and second interconnects and an insulating material between the first and second interconnects, forming a first mask layer and a second mask layer having a plurality of micropores sequentially on the interconnect structure, coalescing the plurality of micropores in the second mask layer with each other and forming a plurality of first microholes in the second mask layer, forming a plurality of second microholes in the first mask layer using the plurality of first microholes, and removing the insulating material using the first mask layer with the plurality of second microholes as an etch mask so as to form an air-gap between the first and second interconnects.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 30, 2010
    Inventors: Sang-Don Nam, Sang-Hoon Ahn, Eunkee Hong
  • Publication number: 20100240194
    Abstract: A method of fabricating a semiconductor device, the method including sequentially forming a pad oxide layer and a nitride layer on a substrate; etching the nitride layer, the pad oxide layer, and the substrate to form a trench; forming a sidewall oxide layer on a sidewall and a bottom of the trench; forming a oxide layer liner including nitrogen on the sidewall oxide layer; and forming a gap fill layer on the oxide layer liner
    Type: Application
    Filed: March 23, 2010
    Publication date: September 23, 2010
    Inventors: DeokYoung Jung, Ju-Seon Goo, Kyung-Mun Byun, Eunkee Hong, Jun-Won Lee
  • Publication number: 20100230741
    Abstract: A tunnel insulating layer and a charge storage layer are sequentially stacked on a substrate. A recess region penetrates the charge storage layer, the tunnel insulating layer and a portion of the substrate. The recess region is defined by a bottom surface and a side surface extending from the bottom surface. A first dielectric pattern includes a bottom portion covering the bottom surface and inner walls extending from the bottom portion and covering a portion of the side surface of the recess region. A second dielectric pattern is in the recess region between the inner walls of the first dielectric pattern, and the second dielectric pattern enclosing an air gap. The air gap that is enclosed by the second dielectric pattern may extend through a major portion of the second dielectric pattern in a direction away from the bottom surface of the recess region.
    Type: Application
    Filed: February 23, 2010
    Publication date: September 16, 2010
    Inventors: Jongwan Choi, Eunkee Hong, Bo-Young Lee, Tae-Jong Han, Juseon Goo, Kyungmun Byun
  • Publication number: 20100203700
    Abstract: A method of forming a semiconductor device includes preparing a substrate having a recessed area. A silicon oxide layer is formed at the recessed area. A catalytic nitridation treatment is performed for an upper portion of the silicon oxide layer to form a nitridation reactant on the upper portion of the silicon oxide layer. A dielectric layer is formed on the silicon oxide layer where the nitridation reactant is formed. The dielectric layer is annealed. According to the foregoing method, recession of the dielectric layer is prevented to fabricate a high-quality semiconductor device.
    Type: Application
    Filed: January 13, 2010
    Publication date: August 12, 2010
    Inventors: Kyungmun Byun, Deok-Young Jung, Ju-Seon Goo, Eunkee Hong
  • Publication number: 20100167490
    Abstract: Provided are methods of fabricating flash memory devices that may prevent a short circuit from occurring between cell gate lines. Methods of fabricating such flash memory devices may include forming gate lines including a series of multiple cell gate lines and multiple selection gate lines. Each gate line may include a stacked structure of a tunnel insulating layer, a floating gate, a gate insulating layer, and/or a polysilicon layer operable to be a control gate, all formed on a semiconductor substrate. Methods may include forming a first insulating layer that selectively fills gaps between the cell gate lines from the bottom up and between adjacent ones of the cell gate lines and the selection gate lines, and does not fill a space located on outer sides of the selection gate lines that are opposite the plurality of cell gate lines. A spacer may be formed on the outer sides of the selection gate lines that are opposite to the cell gate lines, after forming the first insulating layer.
    Type: Application
    Filed: December 3, 2009
    Publication date: July 1, 2010
    Inventors: Jong-wan Choi, Yong-soon Choi, Bo-young Lee, Eunkee Hong, Eun-kyung Baek, Ju-seon Goo
  • Patent number: 7601588
    Abstract: In a method of forming a device isolation layer for minimizing a parasitic capacitor and a non-volatile memory device using the same, a trench is formed on a substrate. A first insulation layer is formed on a top surface of the substrate and on inner surfaces of the trench, so that the trench is partially filled with the first insulation layer. A second insulation layer is formed on the first insulation layer to a thickness to fill up the trench, thereby forming a preliminary isolation layer. An etching rate of the second insulation layer is different from that of the first insulation layer. A recess is formed at a central portion of the preliminary isolation layer by partially removing the first and second insulation layers, thereby forming the device isolation layer including the recess. The recess in the device isolation layer reduces a parasitic capacitance in a non-volatile memory device.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: October 13, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Wan Choi, Hong-Gun Kim, Kyu-Tae Na, Eunkee Hong
  • Patent number: 7585786
    Abstract: Methods of forming an insulating layer in a semiconductor device are provided in which a metal oxide layer is formed on a semiconductor structure that includes a plurality of gap regions thereon. A spin-on-glass layer is formed on the metal oxide layer, and then the semiconductor structure is heated to a temperature of at least about 400° C. The spin-on-glass layer may comprise a siloxane-based material, a silanol-based material or a silazane-based material.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: September 8, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Juseon Goo, Eunkee Hong, Hong-Gun Kim, Kyu-Tae Na
  • Publication number: 20090191687
    Abstract: A method of filling a trench in a substrate ensures that a void or seam is not left in the material occupying the trench. First, a preliminary insulating layer is formed so as to extend contiguously along the bottom and sides of the trench and along an upper surface of the substrate. Impurities are then implanted into a portion of the preliminary insulating layer adjacent the top of the first trench to form a first insulating layer having a doped region and an undoped region. The doped region is removed to form a first insulating layer pattern at the bottom and sides of the first trench, and which first insulating layer pattern defines a second trench. The second trench is then filled with insulating material.
    Type: Application
    Filed: December 19, 2008
    Publication date: July 30, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eunkee Hong, Kyung-Mun Byun, Jong-Wan Choi, Eun-Kyung Baek, Young-Sun Kim
  • Patent number: 7534698
    Abstract: A semiconductor device includes a first structure having a recess having a bottom and opposing side surfaces, and a second structure conformally disposed on the bottom and side surfaces of the recess. The second structure includes a multilayer having two layers having a thickness substantially smaller than a width of the recess. Methods of manufacturing a semiconductor device include providing a first structure having a recess in a deposition chamber and flowing first and second reactants over the first structure for a first period at first and second flow rates. Then, the flow rates of the first second reactants to the first structure are substantially reduced for a pause period. The first and second reactants are then flowed over the first structure for a second period at third and fourth flow rates. The deposition and pause steps may be repeated until a multilayer having a desired thickness is formed.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: May 19, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong-Gun Kim, Eunkee Hong, Kyu-Tae Na
  • Publication number: 20090012221
    Abstract: A film is formed on a substrate including conductive patterns or trenches using a composition that included a solvent and perhydro-polysilazane having a weight average molecular weight of about 1,800 to 3,000 and a molecular weight distribution of more than about 2.2 to about 3.0. The film is changed into a silicon oxide film, and then an opening is formed through the silicon oxide film. A contact is formed in the opening by filling the opening with conductive material. The silicon oxide film of perhydro-polysilazane having low molecular weight becomes dense and uniform.
    Type: Application
    Filed: August 19, 2008
    Publication date: January 8, 2009
    Inventors: Eunkee Hong, Kyu-Tae Na, Ju-Seon Goo, Hong-Gun Kim
  • Patent number: 7429637
    Abstract: Compositions that can be used in semiconductor manufacturing processes, comprising perhydro-polysilazane having a weight average molecular weight of about 300 to about 3,000 and a polydispersity index of about 1.8 to about 3.0 are provided. Solutions comprising the compositions of the present invention, methods of forming films in a semiconductor manufacturing process, and methods of manufacturing semiconductor devices are also provided.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: September 30, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eunkee Hong, Kyutae Na, Juseon Goo, Hong Gun Kim