Patents by Inventor F. Daniel Gealy

F. Daniel Gealy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6781864
    Abstract: A system and method for inhibiting the imprinting of capacitor structures employed by memory cells by occasionally changing charge states of the capacitors to a complementary charge state.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: August 24, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, F. Daniel Gealy
  • Publication number: 20040159872
    Abstract: The invention includes a method of depositing a noble metal. A substrate is provided. The substrate has a first region and a second region. The first and second regions are exposed to a mixture comprising a precursor of a noble metal and an oxidant. During the exposure, a layer containing the noble metal is selectively deposited onto the first region relative to the second region. In particular applications, the first region can comprise borophosphosilicate glass, and the second region can comprise either aluminum oxide or doped non-oxidized silicon. The invention also includes capacitor constructions and methods of forming capacitor constructions.
    Type: Application
    Filed: February 9, 2004
    Publication date: August 19, 2004
    Inventors: Cancheepuram V. Srividya, F. Daniel Gealy, Thomas M. Graettinger
  • Patent number: 6777739
    Abstract: A ferroelectric or high dielectric constant capacitor having a multilayer lower electrode comprising at least two layers—a platinum layer and a platinum-rhodium layer—for use in a random access memory (RAM) cell. The platinum layer of the lower electrode adjoins the capacitor dielectric, which is a ferroelectric or high dielectric constant dielectric such as BST, PZT, SBT or tantalum pentoxide. The platinum-rhodium layer serves as an oxidation barrier and may also act as an adhesion layer for preventing separation of the lower electrode from the substrate, thereby improving capacitor performance. The multilayer electrode may have titanium and/or titanium nitride layers under the platinum-rhodium layer for certain applications. The capacitor has an upper electrode which may be a conventional electrode or which may have a multilayer structure similar to that of the lower electrode. Processes for manufacturing the multilayer lower electrode and the capacitor are also disclosed.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: August 17, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Garo J. Derderian, F. Daniel Gealy
  • Patent number: 6773984
    Abstract: The invention includes a method of depositing a noble metal. A substrate is provided. The substrate has a first region and a second region. The first and second regions are exposed to a mixture comprising a precursor of a noble metal and an oxidant. During the exposure, a layer containing the noble metal is selectively deposited onto the first region relative to the second region. In particular applications, the first region can comprise borophosphosilicate glass, and the second region can comprise either aluminum oxide or doped non-oxidized silicon. The invention also includes capacitor constructions and methods of forming capacitor constructions.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: August 10, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Cancheepuram V. Srividya, F. Daniel Gealy, Thomas M. Graettinger
  • Patent number: 6773981
    Abstract: Capacitors and methods of forming capacitors are disclosed. In one implementation, a capacitor comprises a capacitor dielectric layer comprising Ta2O5 formed over a first capacitor electrode. A second capacitor electrode is formed over the Ta2O5 capacitor dielectric layer. Preferably, at least a portion of the second capacitor electrode is formed over and in contact with the Ta2O5 in an oxygen containing environment at a temperature of at least about 175° C. Chemical vapor deposition is one example forming method. The preferred second capacitor electrode comprises a conductive metal oxide. A more preferred second capacitor electrode comprises a conductive silicon comprising layer, over a conductive titanium comprising layer, over a conductive metal oxide layer. A preferred first capacitor electrode comprises a conductively doped Si—Ge alloy. Preferably, a Si3N4 layer is formed over the first capacitor electrode. DRAM cells and methods of forming DRAM cells are disclosed.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: August 10, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Husam N. Al-Shareef, Scott Jeffrey DeBoer, F. Daniel Gealy, Randhir P. S. Thakur
  • Patent number: 6753271
    Abstract: The invention includes an atomic layer deposition method of forming a layer of a deposited composition on a substrate. The method includes positioning a semiconductor substrate within an atomic layer deposition chamber. On the substrate, an intermediate composition monolayer is formed, followed by a desired deposited composition from reaction with the intermediate composition, collectively from flowing multiple different composition deposition precursors to the substrate within the deposition chamber. A material adheres to a chamber internal component surface from such sequentially forming. After such sequentially forming, a reactive gas flows to the chamber which is different in composition from the multiple different deposition precursors and which is effective to react with such adhering material. After the reactive gas flowing, such sequentially forming is repeated. Further implementations are contemplated.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: June 22, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Demetrius Sarigiannis, Garo J. Derderian, Cem Basceri, Gurtej S. Sandhu, F. Daniel Gealy, Chris M. Carlson
  • Patent number: 6746916
    Abstract: A ferroelectric or high dielectric constant capacitor having a multilayer lower electrode comprising at least two layers—a platinum layer and a platinum-rhodium layer—for use in a random access memory (RAM) cell is disclosed. The platinum layer of the lower electrode is formed such that it adjoins the capacitor dielectric, which is a ferroelectric or high dielectric constant dielectric such as BST, PZT, SBT or tantalum pentoxide. The platinum-rhodium layer serves as an oxidation barrier and may also act as an adhesion layer for preventing separation of the lower electrode from the substrate, thereby improving capacitor performance. The multilayer electrode may have titanium and/or titanium nitride layers under the platinum-rhodium layer for certain applications. The capacitor has an upper electrode which may be a conventional electrode or which may have a multilayer structure similar to that of the lower electrode.
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: June 8, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Garo J. Derderian, F. Daniel Gealy
  • Patent number: 6744093
    Abstract: A ferroelectric or high dielectric constant capacitor having a multilayer lower electrode comprising at least two layers—a platinum layer and a platinum-rhodium layer—for use in a random access memory (RAM) cell. The platinum layer of the lower electrode adjoins the capacitor dielectric, which is a ferroelectric or high dielectric constant dielectric such as BST, PZT, SBT or tantalum pentoxide. The platinum-rhodium layer serves as an oxidation barrier and may also act as an adhesion layer for preventing separation of the lower electrode from the substrate, thereby improving capacitor performance. The multilayer electrode may have titanium and/or titanium nitride layers under the platinum-rhodium layer for certain applications. The capacitor has an upper electrode which may be a conventional electrode or which may have a multilayer structure similar to that of the lower electrode. Processes for manufacturing the multilayer lower electrode and the capacitor are also disclosed.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: June 1, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Garo J. Derderian, F. Daniel Gealy
  • Publication number: 20040043559
    Abstract: The invention includes a method of depositing a noble metal. A substrate is provided. The substrate has a first region and a second region. The first and second regions are exposed to a mixture comprising a precursor of a noble metal and an oxidant. During the exposure, a layer containing the noble metal is selectively deposited onto the first region relative to the second region. In particular applications, the first region can comprise borophosphosilicate glass, and the second region can comprise either aluminum oxide or doped non-oxidized silicon. The invention also includes capacitor constructions and methods of forming capacitor constructions.
    Type: Application
    Filed: August 29, 2002
    Publication date: March 4, 2004
    Inventors: Cancheepuram V. Srividya, F. Daniel Gealy, Thomas M. Graettinger
  • Patent number: 6696718
    Abstract: A capacitor including a first electrode selected from a group consisting of transition metals, conductive metal-oxides, alloys thereof, and combinations thereof. The capacitor also includes a second electrode and a dielectric between the first and second electrodes. The present invention may be used to form devices, such as memory devices and processors. The present invention also includes a method of making a capacitor. The method includes forming a first electrode selected from a group consisting of transition metals, conductive metal-oxides, and alloys thereof. The method also includes forming a second electrode and forming a dielectric between the first and second electrodes.
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: February 24, 2004
    Assignee: Micron Technology, Inc.
    Inventors: F. Daniel Gealy, Thomas M. Graettinger
  • Publication number: 20040033310
    Abstract: A deposition method includes positioning a substrate within a deposition chamber defined at least in part by chamber walls. At least one of the chamber walls comprises a chamber surface having a plurality of purge gas inlets to the chamber therein. A process gas is provided over the substrate effective to deposit a layer onto the substrate. During such providing, a material adheres to the chamber surface. Reactive purge gas is emitted to the deposition chamber from the purge gas inlets effective to form a reactive gas curtain over the chamber surface and away from the substrate, with such reactive gas reacting with such adhering material. Further implementations are contemplated.
    Type: Application
    Filed: August 15, 2002
    Publication date: February 19, 2004
    Inventors: Demetrius Sarigiannis, Garo J. Derderian, Cem Basceri, Gurtej S. Sandhu, F. Daniel Gealy, Chris M. Carlson
  • Publication number: 20040033688
    Abstract: The invention includes an atomic layer deposition method of forming a layer of a deposited composition on a substrate. The method includes positioning a semiconductor substrate within an atomic layer deposition chamber. On the substrate, an intermediate composition monolayer is formed, followed by a desired deposited composition from reaction with the intermediate composition, collectively from flowing multiple different composition deposition precursors to the substrate within the deposition chamber. A material adheres to a chamber internal component surface from such sequentially forming. After such sequentially forming, a reactive gas flows to the chamber which is different in composition from the multiple different deposition precursors and which is effective to react with such adhering material. After the reactive gas flowing, such sequentially forming is repeated. Further implementations are contemplated.
    Type: Application
    Filed: August 15, 2002
    Publication date: February 19, 2004
    Inventors: Demetrius Sarigiannis, Garo J. Derderian, Cem Basceri, Gurtej S. Sandhu, F. Daniel Gealy, Chris M. Carlson
  • Patent number: 6689657
    Abstract: A method of forming a capacitor. The method includes forming a substrate assembly having an interconnect recessed therein, and forming a first electrode on the interconnect. The first electrode includes a material selected from the group consisting of transition metals, conductive oxides, alloys thereof, and combinations thereof. The method further includes forming a second electrode, and forming a dielectric between the first and second electrodes.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: February 10, 2004
    Assignee: Micron Technology, Inc.
    Inventors: F. Daniel Gealy, Thomas M. Graettinger
  • Patent number: 6682969
    Abstract: An improved charge storing device and methods for providing the same, the charge storing device comprising a conductor-insulator-conductor (CIC) sandwich. The CIC sandwich comprises a first conducting layer deposited on a semiconductor integrated circuit. The CIC sandwich further comprises a first insulating layer deposited over the first conducting layer in a flush manner. The first insulating layer comprises a structure having a plurality of oxygen cites and a plurality of oxygen atoms that partially fill the oxygen cites, wherein the unfilled oxygen cites define a concentration of oxygen vacancies.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: January 27, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Howard E. Rhodes, Gurtej Sandhu, F. Daniel Gealy, Thomas M. Graettinger
  • Publication number: 20040012043
    Abstract: Disclosed herein are various novel dielectric stack combinations that may be used in integrated circuit devices, and various methods of making same. In one illustrative embodiment, a capacitor is provided which is comprised of a first conductive layer, a first dielectric layer formed above the first conductive layer, the first dielectric layer comprised of a material selected from the group consisting of hafnium silicate, zirconium silicate and aluminum silicate, a second dielectric layer formed above the first dielectric layer, the second dielectric layer comprised of a material selected from the group consisting of hafnium oxide, zirconium oxide and aluminum oxide, and a second conductive layer formed above the second dielectric layer.
    Type: Application
    Filed: July 17, 2002
    Publication date: January 22, 2004
    Inventors: F. Daniel Gealy, Vishnu K. Agarwal
  • Patent number: 6627508
    Abstract: The invention pertains to semiconductor circuit components and capacitors, and to methods of forming capacitors and semiconductor circuit components. In one aspect, the invention includes a method of forming a dielectric layer comprising: a) forming a first tantalum-comprising layer; and b) forming a second tantalum-comprising layer over the first tantalum-comprising layer, the second tantalum-comprising layer comprising nitrogen. In another aspect, the invention includes a method of forming a capacitor comprising: a) forming a first capacitor plate; b) forming a first layer over the first capacitor plate, the first layer comprising tantalum and oxygen; c) annealing the first layer in the presence of an ambient comprising a nitrogen-comprising gas containing at least one compound selected from a group consisting of ammonia, hydrazine and hydrazoic acid; the annealing forming a second layer over the first layer; and d) forming a second capacitor plate over the second layer.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: September 30, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Scott Jeffrey DeBoer, F. Daniel Gealy, Randhir P. S. Thakur
  • Patent number: 6610211
    Abstract: The invention encompasses methods of processing internal surfaces of a chemical vapor deposition reactor. In one implementation, material is deposited over internal surfaces of a chemical vapor deposition reactor while processing semiconductor substrates therein. The deposited material is treated with atomic oxygen. After the treating, at least some of the deposited material is etched from the reactor internal surfaces. In one embodiment, first etching is conducted of some of the deposited material from the reactor internal surfaces. After the first etching, remaining deposited material is treated with atomic oxygen. After the treating, second etching is conducted of at least some of the remaining deposited material from the reactor internal surfaces. In one embodiment, the deposited material is first treated with atomic oxygen. After the first treating, first etching is conducted of some of the deposited material from the reactor internal surfaces.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: August 26, 2003
    Assignee: Micron Technology, Inc.
    Inventors: F. Daniel Gealy, Husam N. Al-Shareef, Scott Jeffrey DeBoer
  • Patent number: 6596651
    Abstract: A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmospheres and 25 atmospheres N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: July 22, 2003
    Assignee: Micron Technology, Inc.
    Inventors: F. Daniel Gealy, Scott DeBoer, Dave Chapek, Husam N. Al-Shareef, Randhir Thakur
  • Publication number: 20030112651
    Abstract: A system and method for inhibiting the imprinting of capacitor structures employed by memory cells by occasionally changing charge states of the capacitors to a complementary charge state.
    Type: Application
    Filed: January 16, 2003
    Publication date: June 19, 2003
    Inventors: Cem Basceri, F. Daniel Gealy
  • Publication number: 20030100163
    Abstract: A capacitor including a first electrode selected from a group consisting of transition metals, conductive metal-oxides, alloys thereof, and combinations thereof. The capacitor also includes a second electrode and a dielectric between the first and second electrodes. The present invention may be used to form devices, such as memory devices and processors. The present invention also includes a method of making a capacitor. The method includes forming a first electrode selected from a group consisting of transition metals, conductive metal-oxides, and alloys thereof. The method also includes forming a second electrode and forming a dielectric between the first and second electrodes.
    Type: Application
    Filed: November 19, 2002
    Publication date: May 29, 2003
    Inventors: F. Daniel Gealy, Thomas M. Graettinger