Patents by Inventor Fa-Long Luo

Fa-Long Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210320678
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of multiple frequency bands transmission with a recurrent neural network that compensates for the self-interference noise generated by power amplifiers at harmonic frequencies of a respective wireless receiver. The recurrent neural network may be coupled to antennas of a wireless device and configured to generate the adjusted signals that compensate self-interference. The recurrent neural network may include a network of processing elements configured to combine transmission signals into sets of intermediate results. Each set of intermediate results may be summed in the recurrent neural network to generate a corresponding adjusted signal. The adjusted signal is receivable by a corresponding wireless receiver to compensate for the self-interference noise generated by a wireless transmitter transmitting on the same or different frequency band as the wireless receiver is receiving.
    Type: Application
    Filed: April 14, 2020
    Publication date: October 14, 2021
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Fa-Long Luo
  • Patent number: 11139845
    Abstract: Systems, methods, and apparatuses for wireless communication are described. Input data for in-phase branch/quadrature branch (I/Q) imbalance or mismatch may be compensated for or non-linear power amplifier noise may be used to generate compensated input data. In some examples, a transmitter may be configured to transmit communications signaling via a first antenna, the transmitter including a filter configured for digital mismatch correction; a receiver may be configured to receive communications signaling via a second antenna; and a switch may be configured to selectively activate a first switch path to couple the transmitter and the first antenna and a second switch path to couple the receiver and the transmitter to provide communications signaling received via the transmitter as feedback for the filter through the receiver.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: October 5, 2021
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Patent number: 11138044
    Abstract: Apparatuses, systems, and methods related to memory pooling between selected memory resources are described. A system using a memory pool formed as such may enable performance of functions, including automated functions critical for prevention of damage to a product, personnel safety, and/or reliable operation, based on increased access to data that may improve performance of a mission profile. For instance, one apparatus described herein includes a memory resource, a processing resource coupled to the memory resource, and a transceiver resource coupled to the processing resource. The memory resource, the processing resource, and the transceiver resource are configured to enable formation of a memory pool between the memory resource and another memory resource at another apparatus responsive to a request to access the other memory resource transmitted from the processing resource via the transceiver.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: October 5, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Aaron P. Boehm, Glen E. Hush, Fa-Long Luo
  • Patent number: 11115256
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of mixing input data with coefficient data. For example, a computing system with processing units may mix the input data for a transmission in a radio frequency (RF) wireless domain with the coefficient data to generate output data that is representative of the transmission being processed according to the wireless protocol in the RF wireless domain. A computing device may be trained to generate coefficient data based on the operations of a wireless transceiver such that mixing input data using the coefficient data generates an approximation of the output data, as if it were processed by the wireless transceiver. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: September 7, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Jeremy Chritz, Tamara Schmitz, Fa-Long Luo, Jaime Cummins
  • Publication number: 20210273849
    Abstract: Examples described herein include methods, devices, and systems which may implement different processing stages for wireless communication in processing units. Such data processing may include a source data processing stage, a baseband processing stage, a digital front-end processing stage, and a radio frequency (RF) processing stage. Data may be received from a sensor of device and then processed in the stages to generate output data for transmission. Processing the data in the various stages may occur during an active time period of a discontinuous operating mode. During the active time period, a reconfigurable hardware platform may allocate all or a portion of the processing units to implement the processing stages. Examples of systems and methods described herein may facilitate the processing of data for 5G (e.g., New Radio (NR)) wireless communications in a power-efficient and time-efficient manner.
    Type: Application
    Filed: May 14, 2021
    Publication date: September 2, 2021
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: FA-LONG LUO, JAIME CUMMINS, TAMARA SCHMITZ, JEREMY CHRITZ
  • Patent number: 11100998
    Abstract: Systems, apparatuses, and methods related to organizing data to correspond to a matrix at a memory device are described. Data can be organized by circuitry coupled to an array of memory cells prior to the processing resources executing instructions on the data. The organization of data may thus occur on a memory device, rather than at an external processor. A controller coupled to the array of memory cells may direct the circuitry to organize the data in a matrix configuration to prepare the data for processing by the processing resources. The circuitry may be or include a column decode circuitry that organizes the data based on a command from the host associated with the processing resource. For example, data read in a prefetch operation may be selected to correspond to rows or columns of a matrix configuration.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: August 24, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Glen E. Hush, Aaron P. Boehm, Fa-Long Luo
  • Publication number: 20210258038
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of full duplex compensation with a self-interference noise calculator. The self-interference noise calculator may be coupled to antennas of a wireless device and configured to generate adjusted signals that compensate self-interference. The self-interference noise calculator may include a network of processing elements configured to combine transmission signals into intermediate results according to input data and delayed versions of the intermediate results. Each set of intermediate results may be combined in the self-interference noise calculator to generate a corresponding adjusted signal. The adjusted signal is received by a corresponding wireless receiver to compensate for the self-interference noise generated by a wireless transmitter transmitting on the same frequency band as the wireless receiver is receiving.
    Type: Application
    Filed: April 7, 2021
    Publication date: August 19, 2021
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Fa-Long Luo
  • Patent number: 11088716
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of full duplex compensation with a self-interference noise calculator that compensates for the self-interference noise generated by power amplifiers at harmonic frequencies of a respective wireless receiver. The self-interference noise calculator may be coupled to antennas of a wireless device and configured to generate the adjusted signals that compensate self-interference. The self-interference noise calculator may include a network of processing elements configured to combine transmission signals into sets of intermediate results. Each set of intermediate results may be summed in the self-interference noise calculator to generate a corresponding adjusted signal.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: August 10, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Patent number: 11088888
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of mixing input data with coefficient data specific to a processing mode selection. For example, a computing system with processing units may mix the input data for a transmission in a radio frequency (RF) wireless domain with the coefficient data to generate output data that is representative of the transmission being processed according to a specific processing mode selection. The processing mode selection may include a single processing mode, a multi-processing mode, or a full processing mode. The processing mode selection may be associated with an aspect of a wireless protocol. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: August 10, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jaime Cummins, Jeremy Chritz, Tamara Schmitz
  • Patent number: 11070257
    Abstract: Examples described herein include systems and methods, including wireless devices and systems with neuron calculators that may perform one or more functionalities of a wireless transceiver. The neuron calculator calculates output signals that may be implemented, for example, using accumulation units that sum the multiplicative processing results of ordered sets from ordered neurons with connection weights for each connection between an ordered neuron and outputs of the neuron calculator. The ordered sets may be a combination of some input signals, with the number of signals determined by an order of the neuron. Accordingly, a kth-order neuron may include an ordered set comprising product values of k input signals, where the input signals are selected from a set of k-combinations with repetition. As an example in a wireless transceiver, the neuron calculator may perform channel estimation as a channel estimation processing component of the receiver portion of a wireless transceiver.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: July 20, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Publication number: 20210195585
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of configuration modes for baseband units (BBU) and remote radio heads (RRH). For example, a computing system including a BBU and a RRH may receive a configuration mode selection including information indicative of a configuration mode for respective processing units of the BBU and the RRH. The computing system allocates the respective processing units to perform wireless processing stages associated with a wireless protocol. The BBU and/or the RRH may generate an output data stream based on the mixing of coefficient data with input data at the BBU and/or the RRH. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Application
    Filed: March 2, 2021
    Publication date: June 24, 2021
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Fa-Long LUO, Jaime CUMMINS, Tamara SCHMITZ, Jeremy CHRITZ
  • Publication number: 20210182074
    Abstract: Examples described herein include systems and methods which include an apparatus comprising a plurality of configurable logic units and a plurality of switches, with each switch being coupled to at least one configurable logic unit of the plurality of configurable logic units. The apparatus further includes an instruction register configured to provide respective switch instructions of a plurality of switch instructions to each switch based on a computation to be implemented among the plurality of configurable logic units. For example, the switch instructions may include allocating the plurality of configurable logic units to perform the computation and activating an input of the switch and an output of the switch to couple at least a first configurable logic unit and a second configurable logic unit. In various embodiments, configurable logic units can include arithmetic logic units (ALUs), bit manipulation units (BMUs), and multiplier-accumulator units (MACs).
    Type: Application
    Filed: February 25, 2021
    Publication date: June 17, 2021
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: FA-LONG LUO, TAMARA SCHMITZ, JEREMY CHRITZ, JAIME CUMMINS
  • Publication number: 20210173893
    Abstract: Methods and apparatus for performing diversity matrix operations within a memory fabric. Various embodiments of the present disclosure are directed to converting a memory array into a matrix fabric for spatial diversity-related matrix transformations and performing matrix operations therein. Exemplary embodiments described herein perform MIMO-related matrix transformations (e.g., precoding, beamforming, or data recovery matrix operations) within a memory device that includes a matrix fabric and matrix multiplication unit (MMU). In one variant, the matrix fabric uses a “crossbar” construction of resistive elements. Each resistive element stores a level of impedance that represents the corresponding matrix coefficient value. The crossbar connectivity can be driven with an electrical signal representing the input vector as an analog voltage. The resulting signals can be converted from analog voltages to a digital values by an MMU to yield a matrix-vector product.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 10, 2021
    Inventor: Fa-Long Luo
  • Patent number: 11032139
    Abstract: Examples described herein include methods, devices, and systems which may implement different processing stages for wireless communication in processing units. Such data processing may include a source data processing stage, a baseband processing stage, a digital front-end processing stage, and a radio frequency (RF) processing stage. Data may be received from a sensor of device and then processed in the stages to generate output data for transmission. Processing the data in the various stages may occur during an active time period of a discontinuous operating mode. During the active time period, a reconfigurable hardware platform may allocate all or a portion of the processing units to implement the processing stages. Examples of systems and methods described herein may facilitate the processing of data for 5G (e.g., New Radio (NR)) wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: June 8, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Publication number: 20210165732
    Abstract: Methods, apparatuses, and systems for tensor memory access are described. Multiple data located in different physical addresses of memory may be concurrently read or written by, for example, employing various processing patterns of tensor or matrix related computations. A memory controller, which may comprise a data address generator, may be configured to generate a sequence of memory addresses for a memory access operation based on a starting address and a dimension of a tensor or matrix. At least one dimension of a tensor or matrix may correspond to a row, a column, a diagonal, a determinant, or an Nth dimension of the tensor or matrix. The memory controller may also comprise a buffer configured to read and write the data generated from or according to a sequence of memory of addresses.
    Type: Application
    Filed: January 15, 2021
    Publication date: June 3, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Publication number: 20210160195
    Abstract: An apparatus is disclosed. The apparatus comprises a plurality of antennas and an integrated circuit chip coupled to the plurality of antennas, and is configured to process cellular signals received from the plurality of antennas in accordance with a cellular communication protocol and to process radio frequency identification (RFID) signals received from the plurality of antennas in accordance with an RFID protocol.
    Type: Application
    Filed: January 29, 2021
    Publication date: May 27, 2021
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: JEREMY CHRITZ, TAMARA SCHMITZ, JOHN L. WATSON, JOHN SCHROETER, FA-LONG LUO, JAIME CUMMINS
  • Publication number: 20210159928
    Abstract: Examples described herein include methods, devices, and systems which may compensate input data for non-linear power amplifier noise to generate compensated input data. In compensating the noise, during an uplink transmission time interval (TTI), a switch path is activated to provide amplified input data to a receiver stage including a coefficient calculator. The coefficient calculator may calculate an error representative of the noise based partly on the input signal to be transmitted and a feedback signal to generate coefficient data associated with the power amplifier noise. The feedback signal is provided, after processing through the receiver, to a coefficient calculator. During an uplink TTI, the amplified input data may also be transmitted as the RF wireless transmission via an RF antenna. During a downlink TTI, the switch path may be deactivated and the receiver stage may receive an additional RF wireless transmission to be processed in the receiver stage.
    Type: Application
    Filed: January 29, 2021
    Publication date: May 27, 2021
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: FA-LONG LUO, JEREMY CHRITZ, JAIME CUMMINS, TAMARA SCHMITZ
  • Publication number: 20210149984
    Abstract: Methods and apparatus for performing video processing matrix operations within a memory fabric. Various embodiments of the present disclosure are directed to converting a memory array into a matrix fabric for discrete cosine transform (DCT) matrix transformations and performing DCT matrix operations therein. Exemplary embodiments described herein perform DCT matrix-matrix multiplication operations within a memory device that includes a matrix fabric and matrix multiplication unit (MMU). In one embodiment, matrix-matrix multiplication operations are obtained using separate matrix-vector products. In one exemplary embodiment, the matrix fabric uses a “crossbar” construction of resistive elements. Each resistive element stores a level of impedance that represents the corresponding matrix coefficient value. The crossbar connectivity can be driven with an electrical signal representing the input vector as an analog voltage.
    Type: Application
    Filed: November 20, 2019
    Publication date: May 20, 2021
    Inventor: Fa-Long Luo
  • Publication number: 20210143860
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of mixing input data delayed versions of at least a portion of the respective processing results with coefficient data specific to a processing mode selection. For example, a computing system with processing units may mix the input data delayed versions of respective outputs of various layers of multiplication/accumulation processing units (MAC units) for a transmission in a radio frequency (RF) wireless domain with the coefficient data to generate output data that is representative of the transmission being processed according to a wireless processing mode selection. In another example, such mixing input data with delayed versions of processing results may be to receive and process noisy wireless input data. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 13, 2021
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Fa-Long Luo
  • Publication number: 20210144350
    Abstract: Apparatuses, systems, and methods related to an image processor formed in an array of memory cells are described. An image processor as described herein is configured to reduce complexity and power consumption and/or increase data access bandwidth by performing image processing in the array of memory cells relative to image processing by a host processor external to the memory array. For instance, one apparatus described herein includes sensor circuitry configured to provide an input vector, as a plurality of bits that corresponds to a plurality of color components for an image pixel, and an image processor formed in an array of memory cells. The image processor is coupled to the sensor circuitry to receive the plurality of bits of the input vector. The image processor is configured to perform a color correction operation in the array by performing matrix multiplication on the input vector and a parameter matrix to determine an output vector that is color corrected.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 13, 2021
    Inventors: Fa-Long Luo, Jaime C. Cummins, Tamara Schmitz