Patents by Inventor Fa-Long Luo

Fa-Long Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11751031
    Abstract: Methods, apparatuses, and systems related to wireless main memory for computing are described. A device may include a processor that is wirelessly coupled to a memory array, which may be in a physically separate device. The processor may execute instructions stored in and wirelessly communicated from the memory array. The processor may read data from or write data to the memory array via a wireless communication link (e.g., using resources of an ultra high frequency, super high frequency, and/or extremely high frequency band). Several devices may have a small amount of local memory (or no local memory) and may share, via a wireless communication link, a main memory array. Memory devices may include memory resources and transceiver resources; they may be configured to use one or several communication protocols over licensed or shared frequency spectrum bands, directly (e.g., device-to-device) or indirectly (e.g., via a base station).
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: September 5, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Glen E. Hush, Aaron P. Boehm
  • Publication number: 20230262731
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of configuration modes for baseband units (BBU) and remote radio heads (RRH). For example, a computing system including a BBU and a RRH may receive a configuration mode selection including information indicative of a configuration mode for respective processing units of the BBU and the RRH. The computing system allocates the respective processing units to perform wireless processing stages associated with a wireless protocol. The BBU and/or the RRH may generate an output data stream based on the mixing of coefficient data with input data at the BBU and/or the RRH. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 17, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: FA-LONG LUO, JAIME CUMMINS, TAMARA SCHMITZ, JEREMY CHRITZ
  • Publication number: 20230261915
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of mixing input data with coefficient data specific to a processing mode selection. For example, a computing system with processing units may mix the input data for a transmission in a radio frequency (RF) wireless domain with the coefficient data to generate output data that is representative of the transmission being processed according to a specific processing mode selection. The input data is mixed with coefficient data at layers of multiplication/accumulation processing units (MAC units). The processing mode selection may be associated with an aspect of a wireless protocol. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Application
    Filed: April 20, 2023
    Publication date: August 17, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Patent number: 11716104
    Abstract: Systems, methods, and apparatuses for wireless communication are described. Input data for in-phase branch/quadrature branch (I/Q) imbalance or mismatch may be compensated for or non-linear power amplifier noise may be used to generate compensated input data. In some examples, a transmitter may be configured to transmit communications signaling via a first antenna, the transmitter including a filter configured for digital mismatch correction; a receiver may be configured to receive communications signaling via a second antenna; and a switch may be configured to selectively activate a first switch path to couple the transmitter and the first antenna and a second switch path to couple the receiver and the transmitter to provide communications signaling received via the transmitter as feedback for the filter through the receiver.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: August 1, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Publication number: 20230237383
    Abstract: Methods and apparatus for applying data analytics such as deep learning algorithms to sensor data. In one embodiment, an electronic device such as a camera apparatus including a deep learning accelerator (DLA) communicative with an image sensor is disclosed, the camera apparatus configured to evaluate unprocessed sensor data from the image sensor using the DLA. In one variant, the camera apparatus provides sensor data directly to the DLA, bypassing image signal processing in order to improve the effectiveness the DLA, obtain DLA results more quickly than using conventional methods, and further allow the camera apparatus to conserve power.
    Type: Application
    Filed: March 31, 2023
    Publication date: July 27, 2023
    Inventor: Fa-Long Luo
  • Patent number: 11711797
    Abstract: Systems, apparatuses and method related to remotely executable instructions are described. A device may be wirelessly coupled to (e.g., physically separated) another device, which may be in a physically separate device. The another device may remotely execute instructions associated with performing various operations, which would have been entirely executed at the device absent the another device. The outputs obtained as a result of the execution may be transmitted, via the transceiver, back to the device via a wireless communication link (e.g., using resources of an ultra high frequency (UHF), super high frequency (SHF), extremely high frequency (EHF), and/or tremendously high frequency (THF) bands). The another device at which the instructions are remotely executable may include memory resources, processing resources, and transceiver resources; they may be configured to use one or several communication protocols over licensed or shared frequency spectrum bands, directly (e.g.
    Type: Grant
    Filed: August 19, 2022
    Date of Patent: July 25, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Glen E. Hush, Aaron P. Boehm
  • Patent number: 11709715
    Abstract: Apparatuses, systems, and methods related to memory pooling between selected memory resources are described. A system using a memory pool formed as such may enable performance of functions, including automated functions critical for prevention of damage to a product, personnel safety, and/or reliable operation, based on increased access to data that may improve performance of a mission profile. For instance, one apparatus described herein includes a memory resource, a processing resource coupled to the memory resource, and a transceiver resource coupled to the processing resource. The memory resource, the processing resource, and the transceiver resource are configured to enable formation of a memory pool between the memory resource and another memory resource at another apparatus responsive to a request to access the other memory resource transmitted from the processing resource via the transceiver.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: July 25, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Aaron P. Boehm, Glen E. Hush, Fa-Long Luo
  • Patent number: 11710524
    Abstract: Systems, apparatuses, and methods related to organizing data to correspond to a matrix at a memory device are described. Data can be organized by circuitry coupled to an array of memory cells prior to the processing resources executing instructions on the data. The organization of data may thus occur on a memory device, rather than at an external processor. A controller coupled to the array of memory cells may direct the circuitry to organize the data in a matrix configuration to prepare the data for processing by the processing resources. The circuitry may be or include a column decode circuitry that organizes the data based on a command from the host associated with the processing resource. For example, data read in a prefetch operation may be selected to correspond to rows or columns of a matrix configuration.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: July 25, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Glen E. Hush, Aaron P. Boehm, Fa-Long Luo
  • Patent number: 11695503
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of mixing input data with coefficient data specific to a processing mode selection. For example, a computing system with processing units may mix the input data for a transmission in a radio frequency (RF) wireless domain with the coefficient data to generate output data that is representative of the transmission being processed according to a specific processing mode selection. The processing mode selection may include a single processing mode, a multi-processing mode, or a full processing mode. The processing mode selection may be associated with an aspect of a wireless protocol. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: July 4, 2023
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Fa-Long Luo, Jaime Cummins, Jeremy Chritz, Tamara Schmitz
  • Publication number: 20230208458
    Abstract: Examples described herein include methods, devices, and systems which may compensate input data for nonlinear power amplifier noise to generate compensated input data. In compensating the noise, during an uplink transmission time interval (TTI), a switch path is activated to provide amplified input data to a receiver stage including a recurrent neural network (RNN). The RNN may calculate an error representative of the noise based partly on the input signal to be transmitted and a feedback signal to generate filter coefficient data associated with the power amplifier noise. The feedback signal is provided, after processing through the receiver, to the RNN. During an uplink TTI, the amplified input data may also be transmitted as the RF wireless transmission via an RF antenna. During a downlink TTI, the switch path may be deactivated and the receiver stage may receive an additional RF wireless transmission to be processed in the receiver stage.
    Type: Application
    Filed: March 6, 2023
    Publication date: June 29, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Fa-Long Luo
  • Publication number: 20230208449
    Abstract: Examples described herein utilize multi-layer neural networks to decode encoded data (e.g., data encoded using one or more encoding techniques). The neural networks may have nonlinear mapping and distributed processing capabilities which may be advantageous in many systems employing the neural network decoders. In this manner, neural networks described herein may be used to implement error code correction (ECC) decoders.
    Type: Application
    Filed: March 6, 2023
    Publication date: June 29, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: FA-LONG LUO, JAIME CUMMINS, TAMARA SCHMITZ
  • Patent number: 11677685
    Abstract: An apparatus is disclosed. The apparatus comprises a plurality of antennas and an integrated circuit chip coupled to the plurality of antennas, and is configured to process cellular signals received from the plurality of antennas in accordance with a cellular communication protocol and to process radio frequency identification (RFID) signals received from the plurality of antennas in accordance with an RFID protocol.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: June 13, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Jeremy Chritz, Tamara Schmitz, John L. Watson, John Schroeter, Fa-Long Luo, Jaime Cummins
  • Publication number: 20230179241
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of multiple frequency bands transmission with a recurrent neural network that compensates for the self-interference noise generated by power amplifiers at harmonic frequencies of a respective wireless receiver. The recurrent neural network may be coupled to antennas of a wireless device and configured to generate the adjusted signals that compensate self-interference. The recurrent neural network may include a network of processing elements configured to combine transmission signals into sets of intermediate results. Each set of intermediate results may be summed in the recurrent neural network to generate a corresponding adjusted signal. The adjusted signal is receivable by a corresponding wireless receiver to compensate for the self-interference noise generated by a wireless transmitter transmitting on the same or different frequency band as the wireless receiver is receiving.
    Type: Application
    Filed: January 30, 2023
    Publication date: June 8, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Fa-Long Luo
  • Patent number: 11671291
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of mixing input data with coefficient data specific to a processing mode selection. For example, a computing system with processing units may mix the input data for a transmission in a radio frequency (RF) wireless domain with the coefficient data to generate output data that is representative of the transmission being processed according to a specific processing mode selection. The input data is mixed with coefficient data at layers of multiplication/accumulation processing units (MAC units). The processing mode selection may be associated with an aspect of a wireless protocol. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: June 6, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Patent number: 11665710
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of configuration modes for baseband units (BBU) and remote radio heads (RRH). For example, a computing system including a BBU and a RRH may receive a configuration mode selection including information indicative of a configuration mode for respective processing units of the BBU and the RRH. The computing system allocates the respective processing units to perform wireless processing stages associated with a wireless protocol. The BBU and/or the RRH may generate an output data stream based on the mixing of coefficient data with input data at the BBU and/or the RRH. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: May 30, 2023
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Fa-Long Luo, Jaime Cummins, Tamara Schmitz, Jeremy Chritz
  • Patent number: 11665246
    Abstract: Methods and apparatus for incentivizing device participation within a distributed network. In one exemplary embodiment, devices of a fog network may provide for example, computational, storage, and/or network resources in exchange for fungible tokens. In one such variant, the user contributions are recorded in a blockchain data structure, thereby enabling users to be compensated for their contributions of resources to the network at a later time. Unlike traditional networking techniques which often rely on centralized networks directing and/or commandeering user equipment for network bandwidth, the various aspects of the present disclosure are directed to ensuring that crediting and debiting of participation can be performed at the edge of the network (within the fog) without requiring authentication or trust exchanges. More directly, various aspects of the present disclosure are directed to verification and/or validation of work performed by peer devices.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: May 30, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Richard Cameron Murphy, Fa-Long Luo
  • Patent number: 11658687
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of mixing input data with coefficient data. For example, a computing system with processing units may mix the input data for a transmission in a radio frequency (RF) wireless domain with the coefficient data to generate output data that is representative of the transmission being processed according to the wireless protocol in the RF wireless domain. A computing device may be trained to generate coefficient data based on the operations of a wireless transceiver such that mixing input data using the coefficient data generates an approximation of the output data, as if it were processed by the wireless transceiver. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: May 23, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Jeremy Chritz, Tamara Schmitz, Fa-Long Luo, Jaime Cummins
  • Publication number: 20230113600
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of mixing input data delayed versions of at least a portion of the respective processing results with coefficient data specific to a processing mode selection. For example, a computing system with processing units may mix the input data delayed versions of respective outputs of various layers of multiplication/accumulation processing units (MAC units) for a transmission in a radio frequency (RF) wireless domain with the coefficient data to generate output data that is representative of the transmission being processed according to a wireless processing mode selection. In another example, such mixing input data with delayed versions of processing results may be to receive and process noisy wireless input data. Examples of systems and methods described herein may facilitate the processing of data for 5G wireless communications in a power-efficient and time-efficient manner.
    Type: Application
    Filed: November 7, 2022
    Publication date: April 13, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Fa-Long Luo
  • Publication number: 20230113877
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of full duplex compensation with a self-interference noise calculator that compensates for the self-interference noise generated by power amplifiers at harmonic frequencies of a respective wireless receiver. The self-interference noise calculator may be coupled to antennas of a wireless device and configured to generate the adjusted signals that compensate self-interference. The self-interference noise calculator may include a network of processing elements configured to combine transmission signals into sets of intermediate results. Each set of intermediate results may be summed in the self-interference noise calculator to generate a corresponding adjusted signal.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: FA-LONG LUO, JAIME CUMMINS, TAMARA SCHMITZ, JEREMY CHRITZ
  • Publication number: 20230115548
    Abstract: Examples described herein include systems and methods which include wireless devices and systems with examples of cross correlation including symbols indicative of radio frequency (RF) energy. An electronic device including a statistic calculator may be configured to calculate a statistic including the cross-correlation of the symbols. The electronic device may include a comparator configured to provide a signal indicative of a presence or absence of a wireless communication signal in the particular portion of the wireless spectrum based on a comparison of the statistic with a threshold. A decoder/precoder may be configured to receive the signal indicative of the presence or absence of the wireless communication signal and to decode the symbols responsive to a signal indicative of the presence of the wireless communication signal. Examples of systems and methods described herein may facilitate the processing of data for wireless communications in a power-efficient and time-efficient manner.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: FA-LONG LUO, TAMARA SCHMITZ, JEREMY CHRITZ, JAIME CUMMINS