Patents by Inventor Fa-Shen JIANG

Fa-Shen JIANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220069215
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell including a top-electrode barrier layer configured to block the movement of nitrogen or some other suitable non-metal element from a top electrode of the RRAM cell to an active metal layer of the RRAM cell. Blocking the movement of non-metal element may be prevent formation of an undesired switching layer between the active metal layer and the top electrode. The undesired switching layer would increase parasitic resistance of the RRAM cell, such that top-electrode barrier layer may reduce parasitic resistance by preventing formation of the undesired switching layer.
    Type: Application
    Filed: October 14, 2021
    Publication date: March 3, 2022
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Fa-Shen Jiang
  • Publication number: 20220052260
    Abstract: The present disclosure relates to a resistive random access memory (RRAM) device. In some embodiments, the RRAM device includes a first electrode disposed over a substrate and a second electrode over the first electrode. A doped data storage structure is disposed between the first electrode and the second electrode. The doped data storage structure has a dopant with a doping concentration profile that is asymmetric over a height of the doped data storage structure and that has a maximum dopant concentration at non-zero distances from a top surface and a bottom surface of the doped data storage structure.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Inventors: Fa-Shen Jiang, Cheng-Yuan Tsai, Hai-Dang Trinh, Hsing-Lien Lin, Bi-Shen Lee
  • Publication number: 20220037589
    Abstract: Various embodiments of the present disclosure are directed towards a memory device including a data storage structure overlying a substrate. A bottom electrode overlies the substrate and a top electrode overlies the bottom electrode. The data storage structure is disposed between the bottom electrode and the top electrode. The data storage structure comprises a dielectric material doped with a first dopant and a second dopant, where the first dopant is different from the second dopant.
    Type: Application
    Filed: July 28, 2020
    Publication date: February 3, 2022
    Inventors: Bi-Shen Lee, Hai-Dang Trinh, Fa-Shen Jiang, Hsun-Chung Kuang
  • Publication number: 20210391329
    Abstract: A memory device includes a field effect transistor and a variable-capacitance capacitor. A gate structure includes a gate dielectric and an intermediate electrode. The variable-capacitance capacitor includes a lower capacitor plate comprising the intermediate electrode, an upper capacitor plate comprising a control gate electrode, and a variable-capacitance node dielectric and including an electrical-field-programmable metal oxide material. The electrical-field-programmable metal oxide material provides a variable effective dielectric constant, and a data bit may be stored as a dielectric state of the variable-capacitance node dielectric in the memory device. The variable-capacitance node dielectric provides reversible electrical field-dependent resistivity modulation, or reversible electrical field-dependent movement of metal atoms therein.
    Type: Application
    Filed: April 12, 2021
    Publication date: December 16, 2021
    Inventors: Fa-Shen JIANG, Hsia-Wei CHEN, Hai-Dang TRINH, Hsun-Chung KUANG
  • Patent number: 11165021
    Abstract: The present disclosure relates to a method of forming a resistive random access memory (RRAM) device. In some embodiments, the method may be performed by forming a first electrode structure over a substrate. A doped data storage element is formed over the first electrode structure. The doped data storage element is formed by forming a first data storage layer over the first electrode structure and forming a second data storage layer over the first data storage layer. The first data storage layer is formed to have a first doping concentration of a dopant and the second data storage layer is formed to have a second doping concentration of the dopant that is less than the first doping concentration. A second electrode structure is formed over the doped data storage element.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: November 2, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fa-Shen Jiang, Cheng-Yuan Tsai, Hai-Dang Trinh, Hsing-Lien Lin, Bi-Shen Lee
  • Publication number: 20210336135
    Abstract: Various embodiments of the present disclosure are directed towards a memory cell including a data storage structure disposed between a top electrode and a bottom electrode. The data storage structure includes a lower switching layer overlying the bottom electrode, and an upper switching layer overlying the lower switching layer. The lower switching layer comprises a dielectric material doped with a first dopant.
    Type: Application
    Filed: July 27, 2020
    Publication date: October 28, 2021
    Inventors: Fa-Shen Jiang, Cheng-Yuan Tsai, Hai-Dang Trinh, Hsing-Lien Lin, Hsun-Chung Kuang, Bi-Shen Lee
  • Patent number: 11152568
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell including a top-electrode barrier layer configured to block the movement of nitrogen or some other suitable non-metal element from a top electrode of the RRAM cell to an active metal layer of the RRAM cell. Blocking the movement of non-metal element may be prevent formation of an undesired switching layer between the active metal layer and the top electrode. The undesired switching layer would increase parasitic resistance of the RRAM cell, such that top-electrode barrier layer may reduce parasitic resistance by preventing formation of the undesired switching layer.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: October 19, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Fa-Shen Jiang
  • Publication number: 20210288248
    Abstract: A method for forming a semiconductor structure includes following operations. A first conductive layer is formed. A first dielectric layer is formed over the first conductive layer, and the first dielectric layer includes at least one trench exposing the first conductive layer. A second conductive layer is formed in the trench. A third conductive layer is formed in the trench, and a resistivity of the third conductive layer is greater than a resistivity of the second conductive layer. A second dielectric layer is formed over the third conductive layer. A phase change material is formed over the first dielectric layer.
    Type: Application
    Filed: June 1, 2021
    Publication date: September 16, 2021
    Inventors: HSING-LIEN LIN, HAI-DANG TRINH, FA-SHEN JIANG
  • Patent number: 11038101
    Abstract: A semiconductor structure includes a first conductive layer and a second conductive layer, and a memory device between the first conductive layer and the second conductive layer. The memory device includes a top electrode, a bottom electrode adjacent to the first conductive layer, and a phase change material between the top electrode and the bottom electrode. The bottom electrode includes a first portion and a second portion between the first portion and the first conductive layer.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: June 15, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Hsing-Lien Lin, Hai-Dang Trinh, Fa-Shen Jiang
  • Patent number: 11024800
    Abstract: Various embodiments of the present disclosure are directed towards a memory cell. The memory cell includes a bottom electrode overlying a substrate. A data storage structure overlies the bottom electrode. A top electrode overlies the data storage structure. Sidewalls of the top electrode and sidewall of the bottom electrode are aligned. Further, a getter layer abuts the bottom electrode.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: June 1, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hai-Dang Trinh, Chin-Wei Liang, Hsing-Lien Lin, Fa-Shen Jiang
  • Publication number: 20210159407
    Abstract: In some embodiments, the present disclosure relates to method of forming an integrated chip. The method includes forming a bottom electrode structure over one or more interconnect layers disposed within one or more stacked inter-level dielectric (ILD) layers over a substrate. The bottom electrode structure has an upper surface having a noble metal. A diffusion barrier film is formed over the bottom electrode structure. A data storage film is formed onto the diffusion barrier film, and a top electrode structure is over the data storage film. The top electrode structure, the data storage film, the diffusion barrier film, and the bottom electrode structure are patterned to define a memory device.
    Type: Application
    Filed: January 6, 2021
    Publication date: May 27, 2021
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Fa-Shen Jiang
  • Publication number: 20210159404
    Abstract: Some embodiments relate to a method for manufacturing a memory device. The method includes forming a bottom electrode over a substrate. A heat dispersion layer is formed over the bottom electrode. A dielectric layer is formed over the heat dispersion layer. A top electrode is formed over the dielectric layer. The heat dispersion layer comprises a first dielectric material.
    Type: Application
    Filed: February 2, 2021
    Publication date: May 27, 2021
    Inventors: Fa-Shen Jiang, Hsing-Lien Lin
  • Publication number: 20210111343
    Abstract: The present disclosure relates to a method of forming a resistive random access memory (RRAM) device. In some embodiments, the method may be performed by forming a first electrode structure over a substrate. A doped data storage element is formed over the first electrode structure. The doped data storage element is formed by forming a first data storage layer over the first electrode structure and forming a second data storage layer over the first data storage layer. The first data storage layer is formed to have a first doping concentration of a dopant and the second data storage layer is formed to have a second doping concentration of the dopant that is less than the first doping concentration. A second electrode structure is formed over the doped data storage element.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 15, 2021
    Inventors: Fa-Shen Jiang, Cheng-Yuan Tsai, Hai-Dang Trinh, Hsing-Lien Lin, Bi-Shen Lee
  • Publication number: 20210074805
    Abstract: Various embodiments of the present disclosure are directed towards a metal-insulator-metal (MIM) capacitor including a diffusion barrier layer. A bottom electrode overlies a substrate. A capacitor dielectric layer overlies the bottom electrode. A top electrode overlies the capacitor dielectric layer. The top electrode includes a first top electrode layer, a second top electrode layer, and a diffusion barrier layer disposed between the first and second top electrode layers.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 11, 2021
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Hai-Dang Trinh, Fa-Shen Jiang
  • Publication number: 20210066591
    Abstract: Various embodiments of the present disclosure are directed towards a memory cell including a co-doped data storage structure. A bottom electrode overlies a substrate and a top electrode overlies the bottom electrode. The data storage structure is disposed between the top and bottom electrodes. The data storage structure comprises a dielectric material doped with a first dopant and a second dopant.
    Type: Application
    Filed: March 3, 2020
    Publication date: March 4, 2021
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Tzu-Chung Tsai, Fa-Shen Jiang, Bi-Shen Lee
  • Publication number: 20210066587
    Abstract: Various embodiments of the present disclosure are directed towards a memory cell including a data storage structure. A top electrode overlies a bottom electrode. The data storage structure is disposed between the top electrode and the bottom electrode. The data storage structure includes a first data storage layer, a second data storage layer, and a third data storage layer. The second data storage layer is disposed between the first and third data storage layers. The second data storage layer has a lower bandgap than the third data storage layer. The first data storage layer has a lower bandgap than the second data storage layer.
    Type: Application
    Filed: February 12, 2020
    Publication date: March 4, 2021
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Cheng-Yuan Tsai, Tzu-Chung Tsai, Fa-Shen Jiang
  • Patent number: 10916697
    Abstract: Some embodiments relate to a memory device. The memory device includes a programmable metallization cell random access memory (PMCRAM) cell. The programmable metallization cell comprises a dielectric layer disposed over a bottom electrode, the dielectric layer contains a central region. A conductive bridge is formable and erasable within the dielectric layer and the conductive bridge is contained within the central region of the dielectric layer. A metal layer is disposed over the dielectric layer. A heat dispersion layer is disposed between the bottom electrode and the dielectric layer.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: February 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Fa-Shen Jiang, Hsing-Lien Lin
  • Patent number: 10910560
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a bottom electrode disposed over one or more interconnect layers and a diffusion barrier layer is arranged over the bottom electrode. A data storage layer is separated from the bottom electrode by the diffusion barrier layer. A top electrode is over the data storage layer.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: February 2, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Fa-Shen Jiang
  • Publication number: 20200411758
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell including a top-electrode barrier layer configured to block the movement of nitrogen or some other suitable non-metal element from a top electrode of the RRAM cell to an active metal layer of the RRAM cell. Blocking the movement of non-metal element may be prevent formation of an undesired switching layer between the active metal layer and the top electrode. The undesired switching layer would increase parasitic resistance of the RRAM cell, such that top-electrode barrier layer may reduce parasitic resistance by preventing formation of the undesired switching layer.
    Type: Application
    Filed: December 23, 2019
    Publication date: December 31, 2020
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Fa-Shen Jiang
  • Patent number: 10818544
    Abstract: The present disclosure relates to an integrated circuit (IC) comprising an adhesion layer to enhance adhesion of an electrode. In some embodiments, the IC comprises a via dielectric layer, an adhesion layer, and a first electrode. The adhesion layer overlies the via dielectric layer, and the first electrode overlies and directly contacts the adhesion layer. The adhesion layer has a first surface energy at an interface at which the first electrode contacts the adhesion layer, and the first electrode has a second surface energy at the interface. Further, the first surface energy is greater than the second surface energy to promote adhesion. The present disclosure also relates to a method for forming the IC.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: October 27, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Hai-Dang Trinh, Fa-Shen Jiang