Patents by Inventor Fabian ZEULNER

Fabian ZEULNER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240140027
    Abstract: The invention relates to an apparatus (1) for the additive manufacturing of at least one three-dimensional object (2) by selectively compacting layer by layer at least one compactible building material (3) by means of at least one energy beam (5) generated by at least one radiation generating device (4), comprising at least one radiation generating device (4) for generating at least one energy beam (5) for compacting at least one compactible building material (3), at least one coating device (8) for carrying out at least one coating operation to apply a defined building material layer (9) of at least one compactible building material (3) to a building plane (10) or to a building material layer (9) of at least one compactible building material (3) that has previously been applied in the course of carrying out a previous coating operation, and also at least one recording device (11) for recording layer information describing, at least for certain portions, the quality, in particular of the surface, of a buildin
    Type: Application
    Filed: January 11, 2024
    Publication date: May 2, 2024
    Inventors: Frank Herzog, Florian Bechmann, Fabian Zeulner
  • Patent number: 11945159
    Abstract: A method of additively manufacturing a three-dimensional object may include allocating irradiation of respective ones of a plurality of sequential layers of construction material between a first region and a second region based at least in part on a first irradiation time and/or a second irradiation time. Irradiation of the first region is allocated to a first scanner and the first irradiation time is indicative of a time required for the first scanner to irradiate the first region with respect to at least one of the plurality of sequential layers of construction material. Irradiation of the second region is allocated to a second scanner and the second irradiation time is indicative of a time required for the second scanner to irradiate the second region with respect to at least one of the plurality of sequential layers of construction material. The first irradiation time and the second irradiation time may be at least approximately the same.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: April 2, 2024
    Assignee: Concept Laser GmbH
    Inventors: Frank Herzog, Florian Bechmann, Markus Lippert, Johanna Hoch, Alexey Tarasov, Fabian Zeulner
  • Publication number: 20240092021
    Abstract: A system (1) for additive manufacturing of three-dimensional objects, comprising one or more working stations (21), which are provided for performing at least one working process in the additive manufacturing of three-dimensional objects, at least one freely positionable mobile storage unit (2) comprising a rack-like storage device (4) comprising at least one storage room (5) provided for storing at least one powder module (6), especially for the purpose of conveying the powder module (6) between different working stations (21) of the system (1), and at least one driverless, freely movable mobile conveying unit (3) comprising a receiving device (12) provided for receiving at least one mobile storage unit (2) for the purpose of conveying the storage unit (2) between different working stations (21) of the system (1).
    Type: Application
    Filed: November 27, 2023
    Publication date: March 21, 2024
    Inventors: Florian Bechmann, Ralf Hetzel, Jens Stammberger, Fabian Zeulner, Alexander Hofmann
  • Patent number: 11911957
    Abstract: An apparatus (1) for the additive manufacturing of at least one three-dimensional object (2) by selectively compacting layer by layer at least one compactible building material (3) by means of at least one energy beam (5) generated by at least one radiation generating device (4), comprising at least one radiation generating device (4) for generating at least one energy beam (5) for compacting at least one compactible building material (3), at least one coating device (8) for carrying out at least one coating operation to apply a defined building material layer (9) of at least one compactible building material (3) to a building plane (10) or to a building material layer (9) of at least one compactible building material (3) that has previously been applied in the course of carrying out a previous coating operation, and also at least one recording device (11) for recording layer information describing.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: February 27, 2024
    Assignee: Concept Laser GmbH
    Inventors: Frank Herzog, Florian Bechmann, Fabian Zeulner
  • Patent number: 11904545
    Abstract: Apparatus (1) for additively manufacturing three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of at least one energy beam (4), which apparatus (1) comprises an irradiation device (5) with at least one beam guiding element (7) on which the energy beam (4) is partially reflected, wherein a first beam part (10) extends between the beam guiding element (7) and a build plane (18) of the apparatus (1) and a second beam part (11) is transmitted through or scattered at the beam guiding element (7), wherein a determination device (12) is provided that is adapted to determine at least one parameter of the second beam part (11).
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: February 20, 2024
    Assignee: CONCEPT LASER GMBH
    Inventors: Tobias Bokkes, Philipp Schumann, Stephan Hunze, Tim Klaußner, Fabian Zeulner, Marie-Christin Ebert
  • Patent number: 11884006
    Abstract: An irradiation assembly for additively manufacturing three-dimensional objects may include an irradiation device and a magnetic mounting device configured to displaceably support the irradiation device. The irradiation device may include one or more illumination elements respectively configured to emit an energy beam. The magnetic mounting device may include a magnetic slider element coupled to the irradiation device and a magnetic stator element couplable to a housing structure of an additive manufacturing machine. The magnetic stator element may include a displacement track configured to guide the magnetic slider element along a movement path above at least a portion of a construction plane of the additive manufacturing machine while the one or more illumination elements respectively emit the energy beam to selectively irradiate build material at specified regions of the construction plane.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: January 30, 2024
    Assignee: Concept Laser GmbH
    Inventors: Frank Herzog, Florian Bechmann, Fabian Zeulner
  • Patent number: 11833754
    Abstract: A system (1) for additive manufacturing of three-dimensional objects, comprising one or more working stations (21), which are provided for performing at least one working process in the additive manufacturing of three-dimensional objects, at least one freely positionable mobile storage unit (2) comprising a rack-like storage device (4) comprising at least one storage room (5) provided for storing at least one powder module (6), especially for the purpose of conveying the powder module (6) between different working stations (21) of the system (1), and at least one driverless, freely movable mobile conveying unit (3) comprising a receiving device (12) provided for receiving at least one mobile storage unit (2) for the purpose of conveying the storage unit (2) between different working stations (21) of the system (1).
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: December 5, 2023
    Assignee: Concept Laser GmbH
    Inventors: Florian Bechmann, Ralf Hetzel, Jens Stammberger, Fabian Zeulner, Alexander Hofmann
  • Publication number: 20230381864
    Abstract: An additive manufacturing machine includes an energy beam system configured to emit an energy beam utilized in an additive manufacturing process, and first and second optical elements utilized by, or defining a portion of, the energy beam system and/or an imaging system of the additive manufacturing machine. The imaging system monitors one or more operating parameters of the additive manufacturing process. A light source is configured to emit an assessment beam that follows an optical path incident upon the first and second optical elements. One or more light sensors detect a reflected beam that is either internally reflected by the first optical element or reflectively propagated between the first and second optical elements. A control system determines, based at least in part on assessment data comprising data from the one or more light sensors, whether at least one of the first and second optical elements exhibits an optical anomaly.
    Type: Application
    Filed: August 11, 2023
    Publication date: November 30, 2023
    Inventors: Fabian Zeulner, Christian Dicken, Justin Mamrak, MacKenzie Ryan Redding, Bertram Gaerber
  • Patent number: 11752558
    Abstract: An additive manufacturing machine may include an energy beam system configured to emit an energy beam utilized in an additive manufacturing process, and one or more optical elements utilized by, or defining a portion of, the energy beam system and/or an imaging system of the additive manufacturing machine. The imaging system may be configured to monitor one or more operating parameters of the additive manufacturing process. The additive manufacturing machine may include a light source configured to emit an assessment beam that follows an optical path incident upon the one or more optical elements, and one or more light sensors configured to detect a reflected beam comprising at least a portion of the assessment beam reflected and/or transmitted by at least one of the one or more optical elements.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: September 12, 2023
    Assignees: General Electric Company, Concept Laser GmbH
    Inventors: Fabian Zeulner, Christian Dicken, Justin Mamrak, MacKenzie Ryan Redding, Bertram Gaerber
  • Publication number: 20230182395
    Abstract: An unpacking device (4) for unpacking an additively manufactured three-dimensional object (2) from the unsolidified construction material (3) surrounding it after completion of an additive construction process, wherein the unpacking device (4) is formed as a robot (7) having at least three robot axes (A1-A6), especially an industrial robot, wherein at least one unpacking tool (10) is arranged or formed on a robot axis (A6), which is provided for unpacking an additively manufactured three-dimensional object (2) from the unsolidified construction material (3) surrounding it after completion of an additive construction process, or the unpacking device (4) comprises at least one such robot (7).
    Type: Application
    Filed: February 10, 2023
    Publication date: June 15, 2023
    Inventors: Florian Bechmann, Fabian Zeulner, Jens Stammberger, Ralf Hetzel
  • Patent number: 11577404
    Abstract: An unpacking device (4) for unpacking an additively manufactured three-dimensional object (2) from the unsolidified construction material (3) surrounding it after completion of an additive construction process, wherein the unpacking device (4) is formed as a robot (7) having at least three robot axes (A1-A6), especially an industrial robot, wherein at least one unpacking tool (10) is arranged or formed on a robot axis (A6), which is provided for unpacking an additively manufactured three-dimensional object (2) from the unsolidified construction material (3) surrounding it after completion of an additive construction process, or the unpacking device (4) comprises at least one such robot (7).
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: February 14, 2023
    Assignee: CONCEPT LASER GMBH
    Inventors: Florian Bechmann, Fabian Zeulner, Jens Stammberger, Ralf Hetzel
  • Patent number: 11571856
    Abstract: A device for producing three-dimensional objects by successively solidifying layers of a construction material that can be solidified using radiation on the positions corresponding to the respective cross-section of the object, with a housing comprising a process chamber, a construction container situated therein, an irradiation device for irradiating layers of the construction material on the positions corresponding to the respective cross-section of the object, an application device for applying the layers of the construction material onto a carrying device within the construction container or a previously formed layer, a metering device for delivering the construction material, wherein the application device comprises a coating element which distributes the construction material delivered by the metering device as a thin layer in an application area along a linear application movement, wherein at the end of a coating process for a layer when returning the coating element 11 to a coating starting position.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: February 7, 2023
    Assignee: CONCEPT LASER GMBH
    Inventors: Frank Herzog, Florian Bechmann, Fabian Zeulner, Markus Lippert, Jens Stammberger, Christian Diller
  • Publication number: 20230001639
    Abstract: An additive manufacturing apparatus comprises a laser beam source emitting a laser beam, a build platform, a powder source depositing a layer of powder onto the build platform, and a scanning assembly disposed along an optical path between the laser beam source and the build platform. The scanning assembly comprises at least one solid state optical deflector that modifies at least one of a size or an impingement location of the laser beam on the layer of powder at a scanning position of the laser beam. The at least one solid state optical deflector may be used to heat treat the layer of powder either before or after the powder is melted.
    Type: Application
    Filed: June 30, 2021
    Publication date: January 5, 2023
    Applicant: General Electric Company
    Inventors: Maik Zimmermann, Florian Bechmann, Fabian Zeulner
  • Publication number: 20220410488
    Abstract: An additive manufacturing system may include an irradiation device configured to emit an energy beam having a manufacturing power level selected to additively manufacturing a three-dimensional object by irradiating a powder material, and a controller configured to perform one or more beam alignment operations when irradiating the powder material. The irradiation device may include a beam source, one or more beam positioning elements, a beam splitter configured to split a measurement beam from the energy beam, and one or more beam sensors configured to determine one or more parameters of the measurement beam. The one or more beam alignment operations may include determining position information of the energy beam based on the one or more parameters of the measurement beam, and aligning the energy beam with an optical axis of the irradiation device by adjusting a position of the one or more beam positioning elements based on the position information.
    Type: Application
    Filed: June 29, 2021
    Publication date: December 29, 2022
    Inventors: Fabian Zeulner, David Scott Simmermon, Laura L. Banks
  • Publication number: 20220331876
    Abstract: An additive manufacturing machine may include an energy beam system configured to emit an energy beam utilized in an additive manufacturing process, and one or more optical elements utilized by, or defining a portion of, the energy beam system and/or an imaging system of the additive manufacturing machine. The imaging system may be configured to monitor one or more operating parameters of the additive manufacturing process. The additive manufacturing machine may include a light source configured to emit an assessment beam that follows an optical path incident upon the one or more optical elements, and one or more light sensors configured to detect a reflected beam comprising at least a portion of the assessment beam reflected and/or transmitted by at least one of the one or more optical elements.
    Type: Application
    Filed: April 16, 2021
    Publication date: October 20, 2022
    Inventors: Fabian Zeulner, Christian Dicken, Justin Mamrak, MacKenzie Ryan Redding, Bertram Gaerber
  • Patent number: 11446874
    Abstract: Apparatus (17, 24) for additively manufacturing of three-dimensional objects by means of successive layerwise selective irradiation and consolidation of layers of a build material which can be consolidated by means of an energy source, with a filter unit (4) adapted to filter residues from at least one stream of process gas (18), characterized by at least one positioning device (1, 25, 28) adapted to at least partly automatically transfer the filter unit (4) or at least a part of the filter unit between a disconnected state in which the filter unit (4) is disconnected from the stream of process gas (18) to a connected state in which the filter unit (4) is connected to the stream of process gas (18).
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: September 20, 2022
    Assignee: CONCEPT LASER GMBH
    Inventors: Fabian Zeulner, Ralf Hetzel, Jens Stammberger, Alexander Hofmann, Pascal Krause, Dagmar Wohlfarth
  • Patent number: 11426941
    Abstract: Method for calibrating at least one apparatus (1) for additively manufacturing three-dimensional objects by means of successive layerwise selective irradiation and consolidation of layers of a build material which can be consolidated by means of an energy beam that can be generated via an irradiation element of an irradiation device (7) of the apparatus (1), wherein a determination unit (2) is provided for determining at least one parameter of radiation (3) inside a process chamber (5), wherein a calibration beam source (4) is arranged or generated inside the process chamber (5) of the apparatus (1), in particular in a build plane (9) or a region above the build plane (9), wherein at least one parameter, in particular the intensity, of radiation (3) emitted by the calibration beam source (4) is determined via the determination unit (2).
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: August 30, 2022
    Assignee: CONCEPT LASER GMBH
    Inventors: Tim Klaußner, Tobias Bokkes, Martin Wachter, Fabian Zeulner, Marie-Christin Ebert
  • Patent number: 11420261
    Abstract: A system (1) for producing three-dimensional objects (2) by way of the solidification above one another of layers of a building material which can be solidified by means of radiation at the points which correspond to the respective cross section of the object, wherein the system (1) comprises at least one process station (4) which is arranged in a first housing (3) for carrying out the layer-by-layer generative building process in a building container (5), and a handling station (7) in at least one second housing (6) for unpacking produced objects (2) from the building container (5) which can be moved between the at least one process station (4) and the at least one handling station (7), wherein the at least one process station (4) and the at least one handling station (7) are arranged in separate housing units (3, 6).
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: August 23, 2022
    Assignee: CONCEPT LASER GMBH
    Inventors: Frank Herzog, Florian Bechmann, Fabian Zeulner, Jens Stammberger, Christian Diller, Ralf Hetzel
  • Patent number: 11383441
    Abstract: Apparatus (1) for additively manufacturing of three-dimensional objects (2) by means of successive layerwise selective irradiation and consolidation of layers of a build material (3) which can be consolidated by means of an energy beam (4), wherein a measuring unit (5) is provided that is configured to generate information relating to a collimated part (6) of the energy beam (4) and information relating to a focused part (7) of the energy beam (4).
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: July 12, 2022
    Assignee: CONCEPT LASER GMBH
    Inventors: Fabian Zeulner, Christian Dicken, Stephan Hunze
  • Publication number: 20220152738
    Abstract: A process monitoring system for an additive manufacturing apparatus includes a scanner, a sensor device, and an optical focus-tracking device. The scanner includes an optical adjustment device that directs a melting beam emitted by a laser melting device onto a construction plane to generate a melting section of the construction plane. The sensor device may detect reflected radiation from the melting section and generate sensor data indicative of a size, shape, and/or temperature corresponding to the melting section. The optical focus-tracking device includes a focusing lens located between the scanner and the sensor device. The focusing lens may be actuatable by electronic machine data derived from the sensor data to impart a first focus adjustment with respect to the reflected radiation detected by the sensor followed by a second focus adjustment with respect to the melting beam directed by the optical adjustment device.
    Type: Application
    Filed: October 29, 2021
    Publication date: May 19, 2022
    Inventors: Frank Herzog, Florian Bechmann, Tobias Bokkes, Fabian Zeulner